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 1. Introduction 

E cology is the study of changes in animal population abundance. Calculating the abundance 

of a natural population living in the wild is not an easy task because counting every single 

individual is often impossible. Indeed, vertebrate populations can be dispersed over hundreds of 

kilometers, their numbers can go from a few to millions, and individuals can be hard to observe 

(e.g. animals that are very small, nocturnal, or cryptic). 

 

Estimating abundance vs. densities 

One way to estimate a population’s abundance is to count the number of individuals in a 

fraction of the whole population by restricting the observations to a small area, a process called 

sampling. Once the abundance has been estimated for this small area with a certain amount of 

confidence, the population abundance can be assessed by adjusting the sampled abundance to a 

standardised area such as the number of individuals per hectare or square kilometers. This is a 

simple example of how we can estimate densities. 

 

Imperfect detection of animals 

An important aspect that has to be considered when estimating abundances or densities is that 

some individuals will never be seen or heard even though they are present. Thus, a trained 

worker who is watching or listening to count the number of individuals in a given area may be 

able to observe only approximately 60% of all the animals that are present because some are 

hidden underground, by vegetation, or uneven topography. Modelling imperfect detection 

probabilities adequately has been the subject of many studies during the past few decades and is 

now included in several analytical methods such as capture-mark-recapture methods. Using 

those methods, however, requires some skills and guidance. 

 

Spatially-explicit capture-recapture and Distance-based modelling of densities 

In this manual, we present in details two statistical methods commonly used with small 

mammals to estimate densities considering imperfect detection probabilities. These methods are 

the spatially-explicit capture-recapture (SECR) method and the line-transect method, which 

considers that the probability of detecting a feature decreases with the distance to the observer. 

In general, the SECR method is applied  to small mammal live-trapping data collected on grids 

following a Cartesian plane and the line-transect method is applied when transects, which are 

imaginary lines in the field, are used to sample small mammal signs such as winter nests. For 

more information on applying these sampling methods in the field, please consult our other 
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manual entitled Technical manual for sampling small mammals in the Arctic (Cadieux et al. 

2015; http://www.cen.ulaval.ca/bylot/files/Small_Mammal_Sampling_v1.pdf). 

 The analytical methods presented here are fairly advanced and require some notions in 

likelihood-based statistics or in the theory of model selection and model-averaging. We also 

assume that readers have a basic knowledge of the software R, which is freely available on the 

internet. However, we strived to make the presentation of these methods as simple as possible 

and to provide ample explanations on how to proceed with the analysis in a step by step 

approach. For each method, we first present in a chapter the general principles of the method 

and in a second chapter we guide the reader through the analysis of an example dataset obtained 

from the Bylot Island project (Gauthier et al. 2013). We also present all the R codes required to 

perform an analysis, explaining what each line of codes means and does and presenting screen 

captures of the software.   

Introduction 

http://www.cen.ulaval.ca/bylot/files/Small_Mammal_Sampling_v1.pdf


 

 

 2. Estimating small mammal densities with   
spatially-explicit capture-recapture methods 

C apture-recapture methods have been used for a long time to estimate population sizes and 

densities (Williams et al. 2002). These methods perform best on closed populations and 

require that some assumptions are met (see text box). One of the most recent capture-recapture 

methods to estimate densities is the spatially-explicit model (Efford and Fewster 2013). This 

method considers that the detection is imperfect and models it. In addition, it uses the 

movements of individuals among traps to estimate the average distance moved and the spatial 

scale of those movements in and around trapping grids. Overestimation of densities, which is 

common when the scale of movements is not properly considered, are here limited by using the 

concepts of home range and competition for space. 

 There are two software packages that can be used to estimate densities with the spatially-

explicit method: DENSITY and the secr library, available on the R platform (Table 2.1; Efford 

2013, Efford 2015). Although the same algorithms are implemented in both softwares, the 

instructions provided in this manual are based on the secr library. These two tools were 

designed by Murray Efford, the author of considerable work on this method. 

 In this manual, we propose a standardized approach to estimating small mammal densities 

with capture-mark-recapture models year after year and to ensure that the estimates are 

comparable. Following the procedure proposed in this document should make it possible to 

obtain reliable estimates and minimize the risk of having errors creeping into the analyses. 

However, it is important to check the output of each model to ensure, for example, that the 

analyses worked properly or that there were no programming errors. If the estimates give 

unusual results (a standard error of 0 or greater than the density estimate), a common situation 

when sample sizes and especially the number of recaptures are too low, it may be necessary to 

use the minimum number of individuals alive (see details below in section 2.3). In the following 

sections of this document, the instructions for using the secr library are described in details and 

it is important to follow them step by step to ensure that the models converge properly. It is 

essential to first install this package on your computer before proceeding further.  

* TIPS! ‒ Assumptions of closed-population models 

Before applying closed-population models to capture-recapture data, it is important to verify 
that the following assumptions are met: 
 No birth, death, immigration or emigration occurred during the trapping period (or can be 

considered negligible). If an animal dies during trapping, its capture history must be 
censored (see box entitled "Censoring trapping histories" below); 

 No tag was lost or read incorrectly; 
 Capture probabilities are equal among individuals. 
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Table 2.1. Websites where softwares can be downloaded and additional help on how to use them 
can be found. Installation instructions are provided on these websites (checked in September 2017). 

1
There is a high probability that problems you may encounter have already been dealt with and solved. Search the 

forum thoroughly with keywords before posting a new question. 

Software Website 

DENSITY http://www.otago.ac.nz/density/ 

R http://www.r-project.org/ 

secr http://cran.r-project.org/web/packages/secr/index.html 

Help forum1 http://www.phidot.org/forum/index.php 

2.1. How to format capture-recapture datasets for R 

It is important to correctly format your dataset so that the secr package can recognize it. We 

recommend having the data in a data file in text format, each column being separated by a 

tabulation. Two files must be provided: one for the capture data and one with the spatial position 

of traps.  

1. The file containing captures can be easily built by using data entered directly from field 

books to Excel spreadsheets or exported from a database. Typically, each capture or 

recapture of an individual with the accompanying information is entered on a different 

line.  

2. The exact positions of all traps in trapping grids should be recorded every year in a 

separate data file. The position of each trap will appear on a separate line but only once 

because trap position are fixed in a given year. 

 If several species are captured on a given grid (e.g. brown and collared lemmings) or 

several grids are trapped, we recommend creating a different capture text file for each species 

and trapping grid each year. For instance, there should be 4 capture text files and 2 files for trap 

positions for year x if there are 2 species and 2 trapping grids. Making several text files makes 

SECR models less heavy, which reduces computing time. 

 

2.1.1. Capture files 

An example data file from the Bylot Island study is provided in Figure 2.1. In this case, the data 

were entered in an Excel file and later exported in a text file. Each column must be separated by 

a tabulation in the text file. Note that the order of the columns and the column titles are 

important and must be EXACTLY the same because these titles correspond to the names of the 

variables in the program that follows.  

 

Estimating small mammal densities 

http://www.otago.ac.nz/density/
http://www.r-project.org/
http://cran.r-project.org/web/packages/secr/index.html
http://www.phidot.org/forum/index.php
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The columns contain the following information: 

1. #Session: This column identifies the trapping session by the name of the grid and the primary 

capture session involved because several trapping sessions can be conducted in a given year. 

In this example, “LG2PP1” stands for Lemming Grid 2 and Primary Period 1 (June in this 

case); the comment character # MUST be written before Session in the column title.  

2. ID: Unique identifier of each individual animal captured. 

3. Occasion: The secondary capture occasion that an individual was captured within the 

primary trapping session. Secondary trapping occasions are typically consecutive days or 

consecutive 12-h or 6-h intervals and are numbered consecutively starting at 1 for the first 

Estimating small mammal densities 

Figure 2.1.  Format of the capture data as an Excel spreadsheet (top) and the resulting text file  
(tab-delimited) to use for capture-mark-recapture analyses with the secr package in R (bottom). Note that 
the columns in the text file (bottom) may not be aligned because the information of some cells, especially 
some ID and Detector names cover the space of two tabs (the information of the other columns is 
therefore spaced to the right), which would give a misaligned aspect. 

* TIPS! ‒ Censoring trapping histories 

If an animal was not released in the field after being captured because it was kept in captivity 
or accidentally died in the trap, its capture history must be censored. To do this, a minus sign 
should be placed in front of the occasion number. Censoring a capture history avoids 
including artificial non-captures in the detection histories used to estimate detection 
probabilities and relaxes the assumption that the trappable population should not change 
during primary trapping sessions (closed-population assumption, see above). 
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occasion of a trapping session (e.g. if traps are visited in the morning and evening for 3 

consecutive days, this gives a total of 6 occasions numbered from 1 to 6 for each trapping 

session).  

4. Detector: It indicates in which trap the animal was captured. Each trap has a unique 

identifier, which is often a simple alphanumerical coordinate on a Cartesian plane (e.g. A01, 

E08, D10; Figure 2.2). The identifier of the trapping grid can be added before the trap 

identifier (e.g. LG1F04) if models that are used include a grid effect. The models described 

in this document do not require such naming, but it can still be useful to help distinguish 

capture and trap files when several are created. It is important that the code used to identify 

each trap is the same in the capture and the trap file. 

Estimating small mammal densities 

Figure 2.2. Example of a 330 × 330 m gr id with 144 stations at 30-m intervals. Letters are used to 
label the columns and lines are labelled using numbers. 

The first 4 columns are the minimum information required to run SECR models. Additional co-

lumns contain information ancillary to the density analyses (i.e. covariates) and are not used by 

the basic models. However, these data can be left in the text file as they could be used for 

further analysis. In our example, they are: 

5. species: name of the species captured. It is very important that there is no space between the 

words here or the software will consider it as two separate columns. For example, 

“Brown Lemming” is problematic, “BrownLemming” is not. 

6. sex : sex of the individual captured. 

7. age: relative age of the individual based on body mass (for brown lemmings, J: females 

<28g, males <30 g; A: all other individuals). 
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8. mass: body mass of the individual captured. 

9. repro: reproductive condition of the individual (NRP: non-reproductive female or male; PF: 

female with perforated hymen; LA: lactating female; PRG: pregnant female; AB: male with 

testes in abdomen; SC: male with testes in scrotum). 

 Data included in each column (or covariate) should always be verified with the function 

levels(object$column) to avoid erroneous data. For example, some analyses may be case 

sensitive or a typing mistake could have been introduced in the data file. Using the function 

levels() will show all the data that were entered in the specified column. Once an error has 

been located, it is then easy to look for that specific error in the data. 

 

2.1.2 Trap files 

Formatting the trap file adequately is also important to ensure that the program recognizes the 

data structure. Again, the data were entered in an Excel file and later exported in a text file 

(Figure 2.3). Each column must be separated by one tab. It will require a different text file for 

each trapping grid each year. A procedure that saves time is to use the files from previous years 

as initial template and to replace the values with those of the current year. The order of the co-

lumns and the column titles must again be EXACTLY the same as in the example file in Figure 

2.3 for the same reason as in the previous file. The positions of the traps are determined by a 

Cartesian plane (X, Y). Note that in secr, units are in meters by default.  

Estimating small mammal densities 

Figure 2.3. Format of trap position data in Excel (left) and the resulting file in text (tab -delimited; 
right) to be used for spatially-explicit analyses in R. 

The file must contain the following information: 

1. #Detector : A unique identifier for each trap in a trapping grid, which is often a simple 

alphanumerical coordinate on a Cartesian plane. These identifiers must perfectly match those 

written in the Detector column of the capture file (see section 2.1.1 above). 

2. X : the position in relation to the origin along the X axis; the coordinate is in meters (see 

below for additional details). 
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3. Y : the position in relation to the origin along the Y axis; the coordinate is in meters (see 

below for additional details). 

As an example, we can use a trapping grid on Bylot Island with 144 traps (12 × 12) 

arranged along perpendicular X- and Y-axes spaced by 30 m, resulting in 330 × 330 m for the 

entire grid. The coordinate (0,0) has to be assigned to a corner of the grid. For example, the 

origin of the grid shown in Figure 2.2 is A01. In the field it is customary to order the lines in X 

alphabetically, from A to L, and the lines in Y by numbers, from 1 to 12. Thus, the position will 

increase positively in X from 0 to 330 m according to the alphabet (A to L) while in Y, the 

position increases from 0 to 330 m according to the number of the trap (1 to 12).  

It is important to note that the traps are not always placed exactly at each intersection of 

the grid (also called trapping stations) but often within a radius of ~15 m from the station, pre-

ferably at a site showing signs of use by animals. In the field, the distance of the trap in X and Y 

with respect to each point of intersection of the grid is often measured in number of steps made 

in each of these two directions to reach the trap and then transformed into meters. This makes it 

possible to position each trap exactly in space and explains why the values in Figure 2.3 are not 

exact factors of 30 m and are sometimes negative (i.e. if a trap is positioned slightly to the left of 

the first line in Y or slightly below the first line in X, which defines the 0,0 coordinate). 

* TIPS! ‒ What to do when some traps cannot be activated. 

When more than one trapping sessions is conducted annually, the first session may begin 
during snow melt. In those situations, some traps may not be activated during the first 
secondary occasions if some stations are still covered by snow and will only be activated later. 
In the secr package, it is possible to consider trap activation and deactivation by providing an 
activation history (e.g. 000111), where 1 indicates a trap enabled while 0 indicates a trap 
disabled. A trapping history of "000111" indicates that, for a trapping session with 6 occasions, 
the trap was inactive for the first three occasions, whereas it was activated for the three 
remaining occasions. To do this, a new column entitled Usage must be created in the trap file 
(Figure 2.3). In cases where a high proportion of traps could not be activated, this could be 
useful. However, if no more than 2 or 3 traps cannot be activated for a trapping session, it can 
be ignored because this method complicates the models, which already tend to be over 
parameterized. We therefore recommend not using this procedure except under extreme 
conditions (>10% of traps cannot be activated).  

Estimating small mammal densities 
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2.2. Data analysis with SECR models implemented in R 

The parameter of primary interest for the researcher estimated by secr is the animal density (D). 

However, in order to correctly estimate this paramter, secr must estimate two other parameters: 

the detection probability (g0) and the amplitude of movement (σ). A general definition of g0 is 

the mean probability that an animal is captured during a primary period. σ is the mean distance 

traveled by animals estimated by the algorithm and is calculated as a function of the distances 

separating each trap in which animals were recaptured consecutively. This distance is used to 

determine the spatial structure of the animals’ home range in and around the grid. 

 To analyse datasets, we propose to fit six different models in secr when more than one 

trapping session has been conducted on the same grid in the same year and three when a single 

annual session was performed (Table 2.2). Single-session models are also useful for situations 

when sample size is too low (e.g. <5 individuals captured and <2 recaptures in total) during 

most sessions conducted in the same year. The models vary in number of parameters in order to 

allow estimation of densities when sample size is limited because the more parameters there are, 

the more poorly the models perform with small sample size, which is typical during the low 

phase of lemming cycles. However, when sample size is large, more complex models may yield 

more accurate density estimates.  

 In the models proposed, the parameter related to the probability of detection (g0) varies 

for each trapping session when applicable (but is identical for each secondary occasion within 

each trapping session) and between the newly marked and recaptured individuals, which 

considers the effect of a previous capture on the current capture probability (b). The same 

effects are applied to the movement parameter (σ). All combinations of reduced models without 

Estimating small mammal densities 

Table 2.2.  Candidate models used to estimate small mammal densities with spatially-explicit 
capture-recapture methods when two or more trapping sessions have been conducted on the same grid in 
the same year, or when a single session was conducted. 

Model Density (D) Detection prob. (g0) Movements (σ) Number of sessions per year 

Model 1 ~session ~session ~session 2 or more 

Model 2 ~session ~session+b ~session  

Model 3 ~session ~session+b ~session+b  

Model 4 ~session ~session ~1  

Model 5 ~session ~session+b ~1  

 Model 6 ~session ~1 ~1 

Single Model 1 ~1 ~b ~1 

 Model 2 ~1 ~b ~b 

Model 3 ~1 ~1 ~1  

Note: b = effect of previous capture on detection probability; session = temporal effect (categorical variable for 
primary sessions); 1 = constant (no behavioral or temporal effect). 
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those effects are also considered (Table 2.2). More complex models could in theory be fitted, 

such as different probability of detection for each secondary occasion within each trapping 

session. However, based on our experience with analysing this type of data on Bylot Island, 

these models are over parameterised and almost always produce systematic errors, which 

prevent them from converging correctly. 

 Here, we use the half-normal distribution for the detection probabilities (g0), as 

recommended by Krebs et al. (2011) for lemming trapping. The buffer zone is fixed at 100 m 

because this corresponds to 3-4 times the sigma parameter (σ). All models use the maximum 

likelihood approach to estimate the parameters. This takes a certain amount of time (a few 

minutes to an hour for each model) before it is completed because many iterations may be 

required for models to converge when number of captures are high. We recommend David 

Anderson’s book (Anderson 2008), especially chapter 2 and 3, for more information on the use 

of likelihood statistics because it is well written for biologists and other professionals who are 

not specialized in statistics. 

 

2.3. Model selection and model-averaging density estimates 

Once the secr script has been run (see Chapter 3 for an example), it is VERY IMPORTANT to 

eliminate all models with estimation problems. For example, models showing standard errors 

much higher than the parameter itself (e.g. standard error on density estimates being 10 times 

higher than the density estimate), with probability detection of 1 (or 100%), or showing 

movements being ridiculously high (e.g. >1,000 m) are erroneous and must be eliminated. All 

these errors will bias the final density estimate, which must be avoided. In some cases, 

algorithms of some models will not converge because of a local minimum during the likelihood 

estimations or problems with the data such as sample size being too small.  

 These problems can sometimes be easily detected when the second-order Akaike’s 

Information Criterion (AICc; the criterion used for model selection; see details in Chapter 3) of 

a model is completely off compared to the other models (e.g. a model is probably incoherent 

when it has a difference in AICc 10 times higher than the second worst model). When this is the 

case, it is necessary to eliminate this problematic model from the list of models to consider or to 

use during the multi-model inference process (explained below). 

 If no model can provide reliable densities for a particular session because the standard 

error is unusually low or high or the sample size is too small (typically <5 individuals captured 

and <2 recaptures in total), it is preferable not to estimate densities with secr for this period and 

to eliminate all data from this session from the data file. In this case, it will be necessary to use 

the minimum number alive as an estimate of density (see text box).   

Sometimes, the algorithm may not converge or the function is unable to start the iteration 

process. In this case, it may be wise to restart these models with different starting values 

Estimating small mammal densities 
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because it is possible that new starting values will allow the iterative procedure to reach its 

maximum likelihood. You can specify starting values with the argument (start = c ()) as de-

tailed in the following example. If we have three primary capture sessions, three starting values 

(one for each parameter D, g0 and σ to be estimated) must be provided for each session for a 

total of nine. D and σ values must be between [0,∞] and g0 values must be between [0,1]. 

Values must be provided in this order: three values for D, three values for g0, and three values 

for σ. Here are the codes: 

 

model.1<-secr.fit(cmr.data, model=list(D~session, g0~session,sigma~session), 

buffer=100, trace=T, start=c(2,1,3,0.1,0.3,0.2,15,20,25)) 

 

It is also possible to launch a null model to rapidly estimate starting values that could then be 

used in the start = c() argument:  

 

model.null<- secr.fit(cmr.data, model=list(D~1, g0~1,sigma~1), buffer=100, 

trace=T, ncores=4) 

model.1<-secr.fit(cmr.data, model=list(D~session, g0~session, sigma~session), 

buffer=100, trace=T, ncores=4, start=model.null)  

Estimating small mammal densities 

* TIPS! ‒ Minimum number alive. 

The minimum number alive is defined as the number of individuals captured divided by the 
effective sampling area (ESA). This is obtained by using the effective sampling area estimated 
by the top model (ΔAICc = 0), which can be extracted from the secr.fit object with the 
function esa(). The ESA is calculated in hectare and is the value used to divide the total 
number of individuals captured in order to obtain densities (individuals/ha) in those situations. 
If no ESA can be estimated for the current year, the mean ESA calculated for past years could 
be used. If this is the first time the population is sampled, the area covered by the trapping grid 
should be used as a last resort. 



 

 



 

 

 3. Estimating lemming densities with secr: 
an example 

3.1. Context of the example 

We now present a case study conducted on Bylot Island. The data files (capture and trap files) as 

well as the file with the R codes used for this example are provided on our website (i.e. where 

this manual can be found). We live-trapped lemmings on several trapping grids each summer 

(see Fauteux et al. 2015 for details of the field methods). The example files contain the trapping 

data from 2 grids with 144 traps (12 × 12, spaced out at 30-m interval), one located in wet 

habitat and one in mesic habitat, during summer 2016. There were 3 trapping sessions (June, 

July, and August) and at each sessions there was 6 secondary trapping occasions (traps were 

checked at 12-h intervals during 3 consecutive days). We included 5 covariates (i.e. species, sex, 

age, mass, and repro) to be specified in the loading codes. The covariate species defines which 

species was captured, sex is a binary variable defining the sex of the individual, age is also a 

binary variable indicating whether the individual is an adult or juvenile based on body mass, 

mass is the body mass of the individual, and repro is a five-category variable for non-

reproductive individuals, abdominal males (scrotum well-developed but testes in abdomen), 

scrotal males (testes in scrotum), lactating females (i.e. mammaries are inflated), and pregnant 

females.  

 The 5 covariates are not used in the following analyses because our goal is to obtain a 

single density estimate per trapping session and grid. However, using these variables would 

make it possible to stratify the population according to sex, age, or any categorical variables to 

obtain specific densities. This can easily be done by creating one session (column Session in the 

capture file) per category for each monthly trapping session. For example, if we want to 

estimate densities for males and females separately for the months of June, July, and August, we 

would create 6 different trapping sessions instead of 3 (i.e. 3 sessions for males only and 3 

sessions for females only). In the following example, 3 sessions are sufficient because we are 

interested in obtaining a single density estimate per monthly trapping session and grid. 

 

3.2. R codes to estimate SECR densities with the Bylot Island example 

The first steps are to open the R software, install (command install.packages) and load 

(command library) the packages available on the CRAN server. The package secr is used to 

conduct spatially-explicit capture-recapture analyses and the package parallel reduces 

computing time by using several cores of the computer’s processor. 

install.packages("secr")  

install.packages("parallel")  

library(secr) 

library(parallel) 
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 The next step is to load the files that were previously formatted (see section 2.1 and Figure 

2.1 for more details). We will proceed with a first analysis where we want to obtain a single 

density estimate for the months of June, July, and August in our trapping grid located in the wet 

tundra habitat (file name LemmusBylot_Wet2016_Captures.txt). Note that the function to load 

the data file provided below is complete except for the pathname (e.g. captfile="C:/Bylot/

LemmusBylot_Wet2016_Captures.txt", trapfile="C:/Bylot/LemmusBylot_ 

Wet2016_Traps.txt") that must be specified according to where the file is stored on your 

computer hard drive. Note that R use the slash in pathnames "/" instead of backslash "\". Also, 

note that the argument covnames= should be verified to make sure that the names match the 

columns names in the capture text file. If an error occurs regarding the number of column names 

that do not match the number of covariates (or simply the number of columns), make sure that 

there is no space between the species names (e.g. change “Brown Lemming” for    

“BrownLemming” in the data file).  

 

trap.wet<-read.capthist(captfile="LemmusBylot_Wet2016_Captures.txt",    

trapfile="LemmusBylot_Wet2016_Traps.txt", covnames=c

("species","sex","age","mass","repro"), detector="single", fmt="trapID") 

 

There will be a warning that Levels of factor covariate(s) differ between sessions 

but this is normal and only concern covariates, which are not used in this example. Thus, we can 

ignore this message. Once the file has been loaded, we will run the 6 models proposed in Table 

2.2. Those models will provide one density estimate for each monthly trapping session. They 

will also allow us to verify if probabilities of capturing lemmings and the amplitude of 

movements varied between monthly sessions and if previously captured individuals were easier/

harder to recapture or moved more/less than new ones. Here are some information on the 

different codes used in the scripts below: 

Command secr.fit 

 This command calls the spatially-explicit capture-recapture likelihood algorithm used to 

estimate densities, detection probabilities, and movements. 

 Arguments of the command are: 

1. trap.wet: name of the input object that was loaded with the read.capthist command 

(see above). 

2. model: a list object that specifies the model. For each of the 3 parameters (D = animal 

density; g0 = capture probability; sigma = amplitude of movements), we must specify the 

effects imposed on them. Tilts (~) are used to code ‘as a function of’; session and b are 

keywords recognized by secr (see Table 2.2 for an explanation of those effects); plus signs 

Estimating lemming densities- example 
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(+) are used to indicate additive effects and commas (,) separate the three parameters in 

the parenthesis. 

3. buffer: distance used to estimate a buffer zone around traps in which home range centers 

of individuals can be found. In other words, it is the maximum distance moved from a trap 

when the capture probability is not 0. Here, we use 100 m (meters are the default units in 

secr) because lemmings rarely move beyond this distance within grids. This equals 

approximately 2-4 times sigma (Krebs et al. 2011). 

4. detectfn: detection function used to estimate the capture probabilities, as the model 

assumes that this probability declines the further an animal is from a trap. The detection 

function is specified by a keyword; 0 = half-normal distribution, 1 = hazard-rate distribu-

tion, and 2 = exponential distribution. Here, we use the half-normal detection function. 

5. trace: argument used to specify that partial results of each iteration are displayed on the 

screen during the iterative process. Use the keyword TRUE to activate this function. 

6. ncores: the number of processor cores that should be used in the computer to make 

estimations. Typically, the number of cores specified should be a multiple of the number 

of sessions in the analysis (e.g. if we estimate densities for 3 or 6 sessions, then we should 

use 3 cores). 

Note: lines starting with a # are comments. Comments are facultative and are not interpreted by 

R. 

 

If we want to run all 6 models of Table 2.2 for the trapping grid found in the wet tundra habitat, 

we need to repeat the secr.fit command with its argument 6 times, one for each model. Note 

that running these 6 models could take several minutes to a few hours depending on the sample 

size of the dataset and speed of the computer processor. The R codes for these 6 models are as 

follows: 

 

# Model 1: Density~session; detection probability~session; movements~session 

secr.wet.1<-secr.fit(trap.wet, model=list(D~session, 

g0~session,sigma~session), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 2: Density~session; detection probability~session+previous capture;  

# movements~session 

secr.wet.2<-secr.fit(trap.wet, model=list(D~session, 

g0~session+b,sigma~session), buffer=100, detectfn=0, trace=TRUE , ncores=3) 

Estimating lemming densities- example 
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# Model 3: Density~session; detection probability~session+previous capture;  

# movements~session+previous capture 

secr.wet.3<-secr.fit(trap.wet, model=list(D~session, 

g0~session+b,sigma~session+b), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 4: Density~session; detection probability~session; movements~constant 

secr.wet.4<-secr.fit(trap.wet, model=list(D~session,g0~session,sigma~1), 

buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 5: Density~session; detection probability~session+previous capture;  

# movements~constant 

secr.wet.5<-secr.fit(trap.wet, model=list(D~session,g0~session+b,sigma~1), 

buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 6: Density~session; detection probability~constant;movements~constant 

secr.wet.6<-secr.fit(trap.wet, model=list(D~session,g0~1,sigma~1),buffer=100, 

detectfn=0, trace=TRUE, ncores=3) 

 

 

After running the models, the results of each of them should be looked at to assess whether 

errors occurred such as abnormally high/low values for densities, detection probabilities, 

movements or for their standard errors. If one or more model(s) has erroneous results, they 

should be eliminated from the model selection procedure that follows. Looking at the output of 

each model is simply done by calling the resulting object created by the secr.fit() command. 

Here, we will look at the output from model secr.wet.1: 

 > secr.fit(capthist = trap.wet, model = list(D ~ session, g0 ~  
     session, sigma ~ session), buffer = 100, detectfn = 0, trace = TRUE,  

     ncores = 3) 

 secr 3.1.0, 15:27:35 24 oct. 2017 

 

 $LG1PP1 

 Object class      traps  

 Detector type     single  

 Detector number   144  

 Average spacing   22.64703 m  

 x-range           -11.9 336.37 m  

 y-range           -8.5 342.74 m 

 (…) 

Estimating lemming densities- example 
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In the first part of the output, the model that has been run and the date are presented, and 

information about the trapping session are displayed. Object class indicates what kind of 

detector was used, Detector type indicates if the traps were single-catch or multiple-catch, 

Detector number indicates the number of traps used, Average spacing indicates the mean 

minimum distance between traps, and the x– and y-ranges indicate the minimum and 

maximum positions of traps on both axes. In the same output, we then find more information 

about the animals trapped during each primary session, on the options that we specified for the 

model and the maximum likelihood and AICc values of the model: 

 >            LG1PP1 LG1PP2 LG1PP3 
 Occasions       6      6      6 

 Detections     21     38     23 

 Animals         7     13      6 

 Detectors     144    144    144 

 

 Model           :  D~session g0~session sigma~session  

 Fixed (real)    :  none  

 Detection fn    :  halfnormal 

 Distribution    :  poisson  

 N parameters    :  9  

 Log likelihood  :  -341.2644  

 AIC             :  700.5288  

 AICc            :  711.7788  

This part of the output is useful to detect any problems in the input data or in the model. For 

example, were there really 6 occasions for each primary sessions? Were there really 6 

individuals captured in primary session LG1PP3 (e.g. if not, could there be mistakes in column 

ID)? The next information in the output are Beta parameters, Variance-covariance matrix 

of beta-parameters. We will not present this output here because those statistical details are 

not of direct interest to us. However, note that this information can be useful to detect problems 

of estimations when some estimates are really high or low. In the current example, the Beta 

parameter of g0.sessionLG1PP3 has a high value (19.46) and an extremely low standard error 

(0.00000046). The consequence of this is that g0 is estimated at 1 (i.e. at the boundary on the 

[0,1] scale), which means that detection was perfect. This could cause potential estimation errors 

and to assess this, we can look at the parameters on the ’real’ scale. These parameters are 

presented at the end of the output: 

 > Fitted (real) parameters evaluated at base levels of covariates  

 

  session = LG1PP1  

           link     estimate    SE.estimate          lcl           ucl 

 D          log   0.3990285   0.15915754   0.1879068   0.8473546 

 g0       logit   0.2230026   0.07397058   0.1105664   0.3985433 

 sigma      log    25.9477402   3.95414549   19.2810055  4.9196114 
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 session = LG1PP2  

          link        estimate   SE.estimate          lcl           ucl 

 D         log   0.65219756   0.19176915   0.3709078   1.1468123 

 g0      logit   0.08602192   0.02310094   0.0502549   0.1434012 

 sigma     log     41.05998129   5.21574047   32.0424179    52.6153197 

   

 session = LG1PP3  

          link     estimate    SE.estimate          lcl           ucl 

 D         log   0.4212054   1.803255e-01  0.1884949   0.9412135 

 g0      logit   1.0000000   5.271669e-09  1.0000000   1.0000000 

 sigma     log     11.4153969   1.041246e+00  9.5501486    13.6449484 

Even though the link functions are shown here, estimates are on the real scale: individuals/ha for 

D, probability of detection for g0, and movements in meters for sigma. Most estimates shown 

here are plausible except for g0 of session LG1PP3, which indicates perfect detection. This is a 

situation potentially caused by the complexity of the model (9 parameters), low sample size (6 

individuals only) and the very high recapture rate (23 captures; individuals were captured 4 

times on average during LG1PP3). Although this situation is unusual, it is not impossible. 

Moreover, D and sigma estimates are also plausible, so we can keep this model for the next 

steps. Taking a look at the output of model secr.wet.2, we obtain: 

 > Fitted (real) parameters evaluated at base levels of covariates  

 

  session = LG1PP1, b = 0  

         link      estimate   SE.estimate            lcl         ucl 

 D        log     1.25875361  11.53261808  2.022798e-02  78.3301559 

 g0     logit     0.01869709    0.04838448  1.084447e-04    0.7699688 

 sigma    log   26.01009744    3.76709791  1.961101e+01  34.4972170 

 

  session = LG1PP2, b = 0  

         link      estimate  SE.estimate            lcl          ucl 

 D        log    4.190799344  62.17353809  4.411009e-02  398.1582776 

 g0     logit    0.004129858    0.01058066  2.678586e-05     0.3909935 

 sigma    log  39.128772628    4.51351448  3.123447e+01   49.0183036 

 

  session = LG1PP3, b = 0  

         link    estimate   SE.estimate           lcl           ucl 

 D        log    0.4439666      0.1951722    0.1947850      1.011918 

 g0     logit    0.5255861      0.2805761    0.1088039      0.909528 

 sigma    log  12.2219801      1.2621045    9.9879214    14.955744 

In this case, we can see that D for sessions LG1PP1 and LG1PP2 are much higher compared to 

estimates from model secr.wet.1 and have very high standard errors (~10 times D). Clearly, 

this model went through some problems when maximising the likelihood. Looking at the output 

of secr.wet.3 reveals similar estimation problems. However, models secr.wet.4, 

secr.wet.5, and secr.wet.6 all give plausible results with relatively small standard errors. 
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Overall, models 1, 4, 5, and 6 can be kept for the next step in which we will proceed with model 

selection and model averaging. 

 Once we have the results from our list of candidate models without error, they should be 

compared to determine which one provides the best fit to our data. This can be done with the 

AICc. Models having the lowest AICc are considered to be those providing the best compromise 

between complexity and precision of the estimates and are preferred. This information can be 

obtained with the following statement: 
 

AIC(secr.wet.1, secr.wet.4, secr.wet.5, secr.wet.6) 

>                                  model   detectfn   npar   logLik     AIC    AICc  dAICc AICcwt 

secr.wet.1 D~session g0~session sigma~session halfnormal    9 -341.2644 700.529 711.779  0.000 0.9603 

secr.wet.5   D~session g0~session + b sigma~1 halfnormal    8 -346.8394 709.679 718.149  6.370 0.0397 

secr.wet.6             D~session g0~1 sigma~1 halfnormal    5 -364.5324 739.065 742.065 30.286 0.0000 

secr.wet.4       D~session g0~session sigma~1 halfnormal    7 -363.2599 740.520 746.742 34.963 0.0000 

 Information found in this table are model names (model), the detection function 

(detectfn), the number of parameters (npar), the log-likelihood value (logLik),  the AIC and 

the AICc values, the ΔAICc (dAICc), and the AICc weight (AICcwt). In this table, models will 

always be ordered from the model with the lowest AICc value first to the model with the highest 

AICc value last. Indeed, AICc values are related to the information lost by the model (the lowest 

the AICc, the closest to reality is the model). If difference in AICc (dAICc or ΔAICc) between 

the first model (i.e. the one with the lowest AICc value) and the second one is >4 or if the top 

model has an AICc weight of >0.90 (AICcwt), this means that there is little ambiguity in model 

selection. In this situation, the first model is preferred and parameters estimates of this model 

alone are retained. However, it will often be the case that 2 or more models will have ΔAICc 

values <4. This indicates that several models are considered competitive and in some cases (e.g. 

if ΔAICc <2 among the top models), models can be considered close competitors. In such 

situations, it is recommended to use the model-averaging procedure, which adjust parameter 

estimates from the models and their variance to take into account the uncertainty in model 

selection (see text box at the end of this chapter). In the example above, model secr.wet.1 is 

the top model and the second best model is secr.wet.5 with a ΔAICc of 6.37. Since the 

second best model has a ΔAICc of >4, the procedure can stop here and we use the output of 

model 1 as the final results. 

 Now, let’s run the same codes for the second trapping grid and see if the results are similar 

and if models perform well in this situation. We provide below the R codes for this second 

example. 

Estimating lemming densities- example 
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### Models for trapping grid 2 located in the mesic habitat. Load file first. 

 

trap.mesic<-read.capthist("Captures_mesic.txt", "Traps_mesic.txt", covnames=c

("species","sex","age","mass","repro"), detector="single", fmt="trapID") 

 

# Model 1: Density~session; detection probability~session; movements~session 

secr.mesic.1<-secr.fit(trap.mesic, model=list(D~session, g0~session,     

sigma~session), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 2: Density~session; detection probability~session+previous capture;  

# movements~session 

secr.mesic.2<-secr.fit(trap.mesic, model=list(D~session, g0~session+b,    

sigma~session), buffer=100, detectfn=0, trace=TRUE , ncores=3) 

 

# Model 3: Density~session; detection probability~session+previous capture;  

# movements~session+previous capture 

secr.mesic.3<-secr.fit(trap.mesic, model=list(D~session, g0~session+b,    

sigma~session+b), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 4: Density~session; detection probability~session; movements~constant 

secr.mesic.4<-secr.fit(trap.mesic, model=list(D~session, g0~session,      

sigma~1), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 5: Density~session; detection probability~session+previous capture;  

# movements~constant 

secr.mesic.5<-secr.fit(trap.mesic, model=list(D~session, g0~session+b,    

sigma~1), buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

# Model 6: Density~session; detection probability~constant;  

# movements~constant 

secr.mesic.6<-secr.fit(trap.mesic, model=list(D~session, g0~1, sigma~1), 

buffer=100, detectfn=0, trace=TRUE, ncores=3) 

 

As explained above, we need to look at the AICc and the ΔAICc to assess model support and 

determine whether some models should be eliminated or not from the model-averaging step. In 

this case, all models gave plausible D and g0 estimates without aberrant standard errors, 

therefore all models are retained. 

 

AIC(secr.mesic.1, secr.mesic.2, secr.mesic.3, secr.mesic.4, secr.mesic.5, 

secr.mesic.6) 

 

The output obtained is: 
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Here, the output indicates that more than one model have good statistical support and that two 

models (secr.mesic.5 and secr.mesic.3) have a ΔAICc of <4. This indicates that we should 

proceed with model averaging. A simple line of code provided by the secr package does the 

dirty job, or more precisely the calculations with the delta method, for us. Do not forget that 

erroneous models should not be included in this calculation (not the case here). Here, we 

specify betanames = "D" in the argument to ask the model to return the model-averaged 

estimates of density, and not of the detection probability (g0) or movements (sigma). We also 

indicate in the argument the name of the models to include in the procedure. In this case, all 

models with ΔAICc of <4 were included for model-averaging: 

 

model.average(secr.mesic.2, secr.mesic.3, secr.mesic.5, realnames = "D") 

 
Running this command gives the following output: 

                    estimate     SE.estimate       lcl       ucl 

session=LG2PP1,b=0  3.209448    0.7804074  2.006402   5.133845 

session=LG2PP2,b=0  2.412587    0.5048589  1.607923   3.619934 

session=LG2PP3,b=0  2.504588    0.5444891  1.643691   3.816388 

In this output, we can find the estimates on the real scale (individuals/ha), their standard errors 

as well as their respective confidence intervals. Because these results are based on models that 

had no aberrant values or estimation problems, they can be considered final. Compare model-

averaged densities obtained for each trapping grid and each session. Did density increase or 

decline during summer? Are there any major differences between trapping grids? Feel free to 

Estimating lemming densities- example 

model detectfn npar logLik AIC AICc dAICc AICcwt 

                

secr.mesic.2 
D~session g0~session +  

b sigma~session 
halfnormal 10 -1038.218 2096.435 2098.993 0.000 0.4704 

                

secr.mesic.5 
D~session g0~session +  

b sigma~1 
halfnormal 8 -1041.220 2098.441 2100.077 1.084 0.2736 

                

secr.mesic.3 
D~session g0~session +  

b sigma~session + b 
halfnormal 11 -1037.551 2097.103 2100.209 1.216 0.2561 

                

secr.mesic.1 
D~session g0~session 

sigma~session 
halfnormal 9 -1060.800 2139.600 2141.669 42.676 0.0000 

                

secr.mesic.4 
D~session g0~session 

sigma~1 
halfnormal 7 -1064.895 2143.789 2145.048 46.055 0.0000 

                

secr.mesic.6 
D~session g0~1 sigma~1 halfnormal 5 -1070.151 2150.301 2150.961 51.968 0.0000 
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explore this example in details to familiarise yourself with the results and see how it would 

apply to your own study system. 

* TIPS! ‒ Model averaging density estimates 

In the model-averaging procedure, we do a weighted average of the parameter estimate of 
interest across several models using the AICc weight of each model as the weighing factor. 
Thus, the highest the AICc weight of a model, the more weight the parameter value from this 
model will have in the average. The standard errors are also adjusted to reflect not only the 
uncertainty associated with the estimate in each model but also the uncertainty associated 
with the model selection procedure itself (see Burnham and Anderson 2002 for more details). 
The end-result is that model-averaged standard errors will be inflated. 
 
Whether model-averaging should be applied or not is currently a research topic in the 
biostatistical literature and we prefer to warn readers about this debate. However, we believe 
that the advantages of this method outweigh its potential disadvantages in the sense that each 
hypothesis (or model) can be true, but some are more statistically supported than others. 
Model-averaging accounts for this uncertainty based on the principle of parsimony and helps 
us to remain objective and prudent in our inferences. We therefore recommend its use. 
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 4. Estimating winter nest densities with 
distance sampling methods  

A s explained in the introduction, one has sometimes to rely on indirect methods to survey 

small mammals and obtain abundance indices. These alternative methods rely on counting 

signs left by the presence of animals such as scats, tracks, burrows or nests made of vegetation 

built by small mammals under the snow in winter (refer to as winter nests). When counting 

these signs of animal presence in the field, it is often not possible to find all of them, which 

raises again the problem of imperfect detection as in the case of live-trapping data. A statistical 

method called line-transect (or distance sampling) has been developed to address this problem 

of imperfect detection. This method can be applied to sample the abundance of all sorts of signs 

left by animals but in the context of small mammals and especially lemmings, it is most often 

applied to the sampling of their winter nests. As with the SECR method described previously, 

distance sampling requires the use of advanced statistical models and some assumptions must be 

met (see text box below). In this section, we explain how to apply this statistical method to 

sample winter nest density and we propose a standardized approach to perform such analysis.  

 The basic principle of distance sampling consists of walking along a straight, geolocated 

line (i.e. the transect) in the field and noting every object that is seen on either side of the 

transect (Figure 4.1). Obstacles such as uneven topography, shrubs, or bad weather may prevent 

the observer from seeing an object, which would lead to a false absence. Once an object is 

detected, the perpendicular distance from the transect is measured. The observer then returns to 

the transect and continue walking along it. It is important to record ONLY objects detected while 

walking along the transect line itself and NOT those detected while walking off this line, such as 

when measuring the distance from the transect and a previously-detected object. Distance 

sampling assumes that the probability of detecting an object decreases with distance from the 

transect according to a probability distribution (e.g. half-normal, hazard-rate, uniform). The 

maximum perpendicular distance measured between an object and the transect is used to 

estimate the area surveyed by the observer. Then, the number of undetected object present in 

this surveyed area is estimated as a function of all observed objects and their distances to the 

transect, which are used to model detection probabilities over the area surveyed. The sum of 

detected and undetected features divided by the area surveyed gives a density per unit area. 

TIPS! ‒ Assumptions of distance sampling models 

Before applying distance sampling models to sample signs of animal presence, it is important 
to verify that the following assumptions are met: 
 All objects present on the transect line itself are detected; 
 Objects do not move during sampling (i.e. no double-counting); 
 Distances measured between the objects and the transect line are exact. 
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 There are two software to analyze data obtained with the line-transect method. DISTANCE 

was developed many years ago and can still be used without problem because it is maintained 

up to date by the development team. However, an R package called Distance has also been 

developed to perform the same analyses (Thomas et al. 2009, Miller 2016). Because it is faster 

to program in R with lines of code than in DISTANCE and because we can benefit from other 

packages available in R, we recommend this option. Both applications were developed by the 

same team and use the same algorithms. We provide useful websites to download the softwares 

and get help in Table 4.1.  In this manual, we focus our explanations on how to use the package 

Distance in R. 

Figure 4.1. Schematic view of a line transect sampling. The thick line represents the transect. The 
solid dots are objects detected by the observer when walking along the transect while open dots were not 
detected either because of the uneven topography or their distance from the transect. The dashed line 
represents the perpendicular distance from each element to the transect line. 

Tableau 4.1. Websites useful to download the softwares and obtain help. Instructions provided in 
the websites should be followed to correctly install the softwares (checked in September 2017). 

Software Website 

DISTANCE http://distancesampling.org/ 

R http ://www.r-project.org/ 

Distance https://cran.r-project.org/web/packages/Distance/index.html 

Help Forum https://groups.google.com/forum/#!forum/distance-sampling 

http://distancesampling.org/
http://www.r-project.org/
https://cran.r-project.org/web/packages/Distance/index.html
https://groups.google.com/forum/#!forum/distance-sampling
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4.1. How to format winter nest datasets for Distance  

It is important to correctly format your dataset so that the Distance package can recognize it. To 

import the data into R, it is possible to prepare only one text file per year even if your data are 

stratified by habitat, sites or other variables (as opposed to several files with the secr packages 

when the data are separated by habitat or species; see Chapter 3). Each line in the data file 

corresponds to one winter nest detected along one transect and the information associated with 

that nest. As with secr, you can prepare your data in an Excel file and export it in a text file. 

Each column must be separated by a tabulation in the text file. Note that the order of the 

columns and the column titles are important and must be EXACTLY the same as in the example 

file because these titles correspond to the names of the variables in the program codes that 

follow. We show in Figure 4.2 an example data file that comes from the sampling of lemming 

winter nests on Bylot Island. In the text file provided in R, it is necessary to include the 

following columns with the names written EXACTLY as follows: 

1. Region.Label: The name of the site (hereafter called region) and of the species. On Bylot 

Island for instance, we sampled winter nests for two species (brown and collared lemmings). 

This column will tell the software to estimate density separately for each different label 

recognized in this column (in our case, for each lemming species in each region). In other 

words, the regions can be anything that requires a different estimation of density. 

2. Area: Size of the surveyed area if known. Here we specify 0 because the size of the surveyed 

area on either side of the transects is unknown a priori. In this case, the software will 

estimate the surveyed area based on the longest distance separating a nest from the transect 

along which it was found. 

3. Sample.Label: The name/number of the transect along which the nest was found. This 

implies that each transect has a unique identifier. For example in the Bylot dataset, the first 

transect made in the mesic habitat of region C2 was named "C2M01". 

4. Effort: Length of the transect along which the nest was found in meters. The length of the 

transect is usually estimated from the GPS tracks recorded in the field. A pre-determined 

theoretical length (e.g. 500 m) can be used for straight transects. Transects can be non-linear 

(e.g. when following a stream bank), but require that their length be estimated from GPS 

tracks. 

5. distance: Perpendicular distance between a nest found and the transect in meters. This 

distance is measured directly in the field with a measuring tape or afterwards according to 

GPS positions and geographic analysis systems. Here, "NA" is noted for transects where no 

nest has been sampled. 

6. habitat: Habitat type associated with each transect. 
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7. stratum: Name of the small mammal species using the nest. On Bylot Island, two species are 

present, brown and collared lemmings, and it is possible to distinguish in the field which 

species used the nest (here, unlike the file used for secr, there can be spaces in labels without 

creating new columns). Because we already specify in the Region.Label that the data is 

stratified by region and species, this column is facultative. 

8. Nest_number: A unique identifier for each nest. Here " NA"  is used for transects where no 

nest was sampled. Note that only RECENT nests (i.e. those built during the previous winter) 

are used to estimate densities because nests older than 1 year are not included in the 

estimates. Old nests must be removed from the text file before the analyses if present. 

Typically, the Nest_number is unique in the data file. For example, a nest found in transect 2 

of habitat mesic in the GP region would be named GPM02-01. 

9. Year: Year of sampling. This column is facultative because one text file per year is usually 

constructed. Having this column or not in the data file will have no consequence on the 

analyses as long as a year  covariate is not specified in the R codes. 

Estimating winter nest densities 

Figure 4.2. Excel file format (top) and text file (bottom, tab-delimited) used by the Distance package 
in the R software. Note that the column headings must be exactly as in the example so that the software 
detects the required information correctly. 
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4.2. Data analysis with the package Distance in R 

To estimate winter nest densities, it is assumed that the probability of detection is 100% for 

nests located directly on the transect line (column distance = 0 m) and that it decreases further 

away from the transect. The most common probability distributions that are used to estimate the 

detection function is the hazard-rate or half-normal. However, the latter detection function 

generally adjusts poorly (based on chi-square tests) to the data when a covariate is used (e.g., 

habitat, region). The uniform distribution, which assumes a constant probability of detection, is 

also possible but is generally avoided because it considers that all nests are equally detectable 

regardless of the perpendicular distance (although an adjustment factor can change that to some 

extent, see below) and it cannot be used with covariates. This distribution can sometimes be 

useful when the sample size is very small. To learn more about probability distribution 

functions, we refer readers to Chapter 5 of the book on distance sampling by Buckland et al. 

(2015). 

 In sampling distance models, an adjustment factor should also be specified. Possible 

factors are the cosine, the Hermite polynomial and the simple polynomial. These factors allow 

the model to be adjusted to situations where the probability of detection does not exactly follow 

the specified distribution (e.g. hazard-rate). For example, nests located within 5 meters may be 

highly visible from the transect but detection may sharply decline when nests are farther than 5 

meters. The adjustment term allows a certain flexibility to better fit the observations. 

 It is necessary to specify in the models that we wish to estimate a density of nests per 

hectare. To do this, a conversion factor of 0.0001 must be included in the models because 

original data in the data file (for length of the transect and perpendicular distance to the 

transects) are in meters and thus the total area estimated by the model is by default in square 

meters. Other conversion factors can be used if other units are used in the data file. 

 Analyses can be repeated for different subgroups in the data (e.g. if one wishes to estimate 

nest density of each species in each study region separately). This can be easily achieved by 

using different labels in the Region.Labels column of the data file or by using covariates. When 

specifying several labels, a separate density estimate will be obtained for each different 

subgroup specified in that column. Habitat is a frequent covariate to consider because both the 

density of winter nests and the detection function will frequently vary across habitats. This 

* WARNING! ‒ Transects sampled but with no nest 

It is extremely important that ALL transects have been entered in the data file FOR BOTH 
SPECIES, even those where no nest has been found because the total effort must be taken 
into account. Such transect should be entered only once (single line in the data file) with the 
required information. 

Estimating winter nest densities 
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configuration adjusts different detection probability for each habitat and allows simultaneous 

estimation of densities in all regions and for each lemming species, one habitat at a time. We 

recommend testing a minimum of three models for each level of the covariate (here habitat), one 

using the half-normal detection function, one using the hazard-rate function, and one using the 

uniform function. This list is in no way exhaustive but represents simple and broadly applicable 

models.  

 After the models have been run, it is necessary to check the fit of each model to the data 

with goodness of fit tests. The software performs three fit tests and allow visual check of the 

adjustment on a graph combining the values predicted by the selected detection function and the 

observed data. The first test is a simple chi-square, which checks the fit by comparing the 

predicted and observed values. This test is the most useful for winter nest sampling whereas the 

other two are more specific. The Kolmogorov-Smirnov test verifies the fit using the greatest 

deviation obtained between values of the predicted relationship and the observed values. This 

deviation is used as a statistical value for the test. Finally, the Cramer-von Mises test uses the 

sum of positive and negative deviations between values of the predicted relationship and the 

observed values. The problem with the last two tests is that sometimes the number of nests 

found on the transect line itself (variable distance = 0) is disproportionate compared to the nests 

found away from the line, a situation that can greatly inflate the values of the Kolmogorov-

Smirnov and Cramer-von Mises statistics. Thus, although all tests can be considered, the chi-

square test is the most useful here. 

 Table 4.2 summarizes the detection functions, adjustment factors and fit tests available in 

the package Distance and their order of preference when estimating winter nest densities. Even 

though the combination of the hazard-rate function with a cosine adjustment usually performs 

best, it is recommended to adjust models with other detection functions also. Based on past 

experience, we recommend the cosine adjustment term because it is often the only term that 

increases model fit. We also do not recommend omission of adjustment terms because uniform 

detection functions cannot be used without it. Furthermore, the command ds in R (see below) 

Table 4.2. Detection functions, adjustment factors and fit tests available in the package Distance to 
model the probability of detection in order of preference. Note that the preference order applies to each 
column separately (i.e. they are in no way orders of combined scenarios). This order is suggested 
because the model using the combination of preferred options generally performs better for winter nests 
on Bylot Island. Keywords for detection functions and adjustment factors to be used in R are in 
parentheses. 

Preference order Detection function Adjustment factor Fit test 

1 Hazard-rate (hr) Cosine (cos) Chi-square 

2 Half-normal (hn) Polynomial (poly) Kolmogorov-Smirnov 

3 Uniform* (unif)
 

Hermite (herm) Cramer-von Mises 

* The uniform distribution does not allow inclusion of covariates and requires an adjustment factor. 

Estimating winter nest densities 
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automatically tests whether adding the adjustment factor increases the model fit or not when 

using the half-normal or hazard-rate detection functions. When alternative models are used, we 

use the AICc value to determine which one provides the best fit. Density estimates generated by 

all these models should always be checked because, although the adjustment may sometimes 

improve when changing detection function or adjustment factor, there is still a risk of obtaining 

aberrant densities or standard errors (i.e. far too high). If this happens, it is necessary to 

eliminate this(ese) model(s) from the selection.  

* TIPS! - Estimation problems in the candidate models  

Sometimes, all models with one or more covariates will give erroneous parameters, especially 
when sample size is too small (e.g. non-convergence, extremely large standard errors, failed fit 
tests). In this case, only the null model can be considered, but it should still be fitted with 
different probability distributions (half-normal, hazard-rate, uniform) and the best model 
selected based on the AICc values. 

Estimating winter nest densities 



 

 



 

 

 5. Estimating winter nest densities with 
distance: an example 

5.1. Context of the example 

We now present a case study conducted on Bylot Island. The data file as well as the file with the 

R codes used for this example are provided on our website (i.e. where this manual can be 

found). On Bylot Island, we are using the line transect method to sample winter nests of brown 

and collared lemmings annually in 3 habitats: wet polygons, mesic tundra, and along stream 

gullies in mesic habitat. Nests are sampled in 5 regions (sites), each separated by ~10 km from 

each other. Transects are 500-m long, except in a few cases where topography (e.g. a lake) 

restricted their length, are randomly located in each region, are permanent (i.e. the same 

transects are sampled every year), and are sampled as soon as possible after snow-melt. The 

number of transects is variable across regions due to logistic constraints (Table 5.1) and not all 

habitats are present in each region. The example used in this chapter comes from the year 2016. 

Table 5.1. Number  of 500-m transects used to sample brown and collared lemming winter nests on 
Bylot Island according to the region and habitat in summer 2016. 

Region Habitat Number of transects 

Camp 1 Wet 20 

 Mesic 23 

 Stream 17 

Camp 2 Mesic 8 

 Stream 10 

Camp 3 Mesic 15 

 Stream 5 

Dufour Point Mesic 8 

 Stream 5 

Goose Point Mesic 6 

 Stream 1 

5.2. R codes to estimate winter nest densities with the Bylot Island example 

The first step in to open the R software and load the packages available on the CRAN servers. 

The package required to conduct the distance sampling analyses is Distance. We also need to 

load the package MuMIn so we can easily obtain the AICc values for our models. 

library(Distance) 

library(MuMIn) 
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In contrast with the SECR analyses, we load a single data file for the whole analysis 

(LemmingsBylot_NestTransects2016.txt). Note that the function to load the data file for 

distance sampling is simpler than with secr (see previous sections) as we need to load only one 

table in which the columns are separated by tabulations. Moreover, the names of covariates (or 

columns) do not have to be specified with the loading command read.delim, which is again 

different than for secr analyses, as it takes the first line of the text file to create the column 

names. The function provided below is complete except for the pathname (e.g. file="C:/

Bylot/LemmusBylot_NestTransects2016.txt") that must be specified according to where 

the file is stored on your computer hard drive. The data file is loaded with the following 

command: 

 

nests2016 <- read.delim(file = ".../LemmusBylot_NestTransects2016.txt") 

 

 In R, one distance sampling model can be written with a single code line with the 

command ds followed by several arguments in parentheses: the subsamples based on one or 

several covariates such as habitat (data), the conversion units (covert.units), the adjustment 

term (adjustment), and the probability function (key). In this example, because we have 

sampled winter nests in three habitats, we are interested in adjusting separate detection 

probabilities for each of them, hence we create subsamples based on this covariate. We first start 

with the mesic habitat. Note that we assume that the probability of detecting a winter nest in a 

given habitat is the same for both species and all regions and this probability is thus modelled 

jointly. Indeed, we have no reason to believe that this probability differs between the two 

species because their nests are very similar and species are identified a posteriori based on 

faeces present in the nest (Duchesne et al. 2011). Moreover, the mesic and stream gully habitat 

are fairly homogeneous throughout our study area. 

 We run a first set of three models, each one with a different detection function but the 

same adjustment factor (see Table 4.2), for the mesic tundra habitat: 

 

mod.2016.hn.mesic <- ds(data=nests2016[nests2016$habitat=="mesic",], 

convert.units=0.0001, adjustment = "cos", key="hn") 

mod.2016.hr.mesic <- ds(data=nests2016[nests2016$habitat=="mesic",], 

convert.units=0.0001, adjustment = "cos", key="hr") 

mod.2016.un.mesic <- ds(data=nests2016[nests2016$habitat=="mesic",], 

convert.units=0.0001, adjustment = "cos", key="un") 

 

During the calculation process, no error occurred for the first two models but one occurred for 

the third model using the uniform detection function. However, the message given by R 

Estimating winter nest densities - example 
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indicates that only the last attempt to adjust the algorithm did not convergence; the other 

attempts did converge and the one with the lowest AICc was retained. To see if the models 

fitted the data and determine whether the results are statistically sound, we use the command 

ds.gof. The output from this command gives the results of the goodness-of-fit tests, the chi-

square, Kolmogorov-Smirnov, and Cramer-von Mises tests. We have to repeat the command for 

each model. We start with the model using the half-normal function: 

 

ds.gof(mod.2016.hn.mesic) 

 

The output of this command is as follows: 

Estimating winter nest densities - example 

 > Goodness of fit results for ddf object 

 

 Chi-square tests 

 (...) 

 

 P = 0.036364 with 8 degrees of freedom 

 

 Distance sampling Kolmogorov-Smirnov test 

 Test statistic =  0.12389  P =  0.062293  

 

 Distance sampling Cramer-von Mises test (unweighted) 

 Test statistic =  0.14045  P =  0.42005 

In the output, we see the results, the test statistics and p-values, from the three tests. As stated 

above, we focus on the chi-square test because it is more appropriate in the case of winter nests 

(see section 4.2). Here, the p-value is <0.05 indicating that expected values are statistically 

different than the observed values, which is not good. The goodness-of-fit tests for the hazard-

rate model give the following results: 

 

ds.gof(mod.2016.hr.mesic) 

 > Goodness of fit results for ddf object 

 

 Chi-square tests 

 (...) 

 

 P = 0.09012 with 8 degrees of freedom 

 

 Distance sampling Kolmogorov-Smirnov test 

 Test statistic =  0.12389  P =  0.062293  

 

 Distance sampling Cramer-von Mises test (unweighted) 

 Test statistic =  0.14505  P =  0.40502 
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The hazard-rate model gives a better fit as revealed by the p-value >0.05. Repeating the fit tests 

for the third model (uniform detection function) reveals that this model has a poor fit (not 

shown). Thus, the hazard-rate model is the only model providing a good fit to the data and 

should be preferred. It is also possible to have a visual assessment of the fit of the detection 

function by using the command plot on the model itself: 

 

plot(mod.2016.hr.mesic) 

 

The resulting figure (Figure 5.1) shows that the detection function appears to follow well the 

frequencies of distances where nests were found.  

Figure 5.1. Hazard-rate detection function curve for the mesic tundra habitat on Bylot in 2016 and 
frequency distribution of winter nests found in relation to their distance from the transect line. This 
model has the highest fit for this habitat. 

The next step is to look at the output of the model to determine if it yielded coherent results. To 

do this, the command summary gives a short description of the results and presents the essential 

information such as the coefficients and the density estimates with their standard errors. When 

more than one model fits the data well, summary outputs of all models should be checked to 

ensure that they all have converged properly and that results are coherent (i.e. density estimates 

or their standard errors are not abnormally large). Problematic models should be identified and 

eliminated right away.  
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summary(mod.2016.hr.mesic) 

 

 

This command gives the following output: 

Estimating winter nest densities - example 

 > Summary for distance analysis  

 Number of observations :  113  

 Distance range         :  0  -  19.7  

 

 Model : Hazard-rate key function  

 AIC   : 539.9559  

 

 Detection function parameters 

 Scale coefficient(s):   

              estimate         se 

 (Intercept)  1.493797  0.1492135 

  

 Shape coefficient(s):   

               estimate         se 

 (Intercept)  0.9684474  0.1894533 

 

                          Estimate              SE             CV 

 Average p                0.314406    0.03044917  0.09684666 

 N in covered region   359.407850  44.66859548  0.12428386 

 

 

 Summary statistics: 

         Region      Area CoveredArea Effort   n   k           ER        se.ER     cv.ER 

 1     C1_brown  44.89236    44.89236  11394  23  23 0.0020186063 0.0004772357 0.2364184 

 2  C1_collared  44.89236    44.89236  11394  19  23 0.0016675443 0.0005336011 0.3199922 

 3     C2_brown  44.89236    15.76000   4000   7   8 0.0017500000 0.0009589801 0.5479886 

 4  C2_collared  44.89236    15.76000   4000   7   8 0.0017500000 0.0007007649 0.4004371 

 5     C3_brown  44.89236    29.55000   7500   2  15 0.0002666667 0.0001817027 0.6813851 

 6  C3_collared  44.89236    29.55000   7500  23  15 0.0030666667 0.0006723567 0.2192467 

 7     GP_brown  44.89236    12.52526   3179  10   6 0.0031456433 0.0013555251 0.4309214 

 8  GP_collared  44.89236    11.82000   3000  18   6 0.0060000000 0.0017888544 0.2981424 

 9     PD_brown  44.89236    15.76000   4000   0   8 0.0000000000 0.0000000000 0.0000000 

 10 PD_collared  44.89236    15.76000   4000   4   8 0.0010000000 0.0005345225 0.5345225 

          Total 448.92360   236.26998  59967 113 120 0.0018843697 0.0002389701 0.1268170 

 

  

 Density: 

           Label  Estimate        se        cv       lcl       ucl        df 

 1     C1_brown 1.6295381 0.4163237 0.2554857 0.9749521  2.723615 29.836424 

 2  C1_collared 1.3461402 0.4500504 0.3343266 0.6896010  2.627742 26.171421 

 3     C2_brown 1.4127032 0.7861422 0.5564807 0.4197923  4.754090  7.443646 

 4  C2_collared 1.4127032 0.5820082 0.4119820 0.5650875  3.531719  7.841154 

 5     C3_brown 0.2152691 0.1481553 0.6882332 0.0568960  0.814482 14.570606 

 6  C3_collared 2.4755943 0.5933603 0.2396840 1.5118233  4.053759 19.900822 

 7     GP_brown 2.5393488 1.1215547 0.4416702 0.8839485  7.294874  5.517217 

 8  GP_collared 4.8435540 1.5183454 0.3134775 2.2972035 10.212423  6.107774 

 9     PD_brown 0.0000000 0.0000000 0.0000000 0.0000000  0.000000  0.000000 

 10 PD_collared 0.8072590 0.4385234 0.5432251 0.2462322  2.646555  7.466621 

      Total 1.6682110 0.2765594 0.1657820 1.1973701  2.324200 45.084804 

First, a short description of the dataset is presented such as the Number of observations 

(here, number of nests found) and the Distance range in which nests were found. This 

information is important to look at to make sure typing mistakes did not occur while entering 
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data in the original Excel data file. Below this, the type of detection function (Model) is 

specified, followed by the AIC. This AIC is not the one we are interested in because it is not 

corrected for small sample size. Instead, we use the AICc command, as shown later in this 

example. Next are the statistics for the detection function. The scale coefficient is related to the 

slope of the function and the shape coefficient is used only in hazard-rate functions to prolong 

the shoulder of the detection probabilities at very short distances from the transect (i.e. close to 

0 m). If cosine adjustments were retained by the model, the coefficients will be shown below the 

scale coefficients. We then find the Average p, which is the average detection probability in the 

area surveyed along with its standard error. The N in covered region is simply the total 

number of nests in all subgroups (i.e. all labels specified in the Region.Label column) combined 

divided by the probability of detection (i.e. 113 / 0.314).  

The Summary statistics table gives plenty of raw information for each subgroup previously 

specified in the Region.Label column. In our case, this yields estimates for each lemming 

species in each region because each label corresponds to a unique combination of species and 

region in that column. The line Total corresponds to the summary statistics for all subgroups 

combined. Here is a description of the information contained in each column of the table: 

1. Region: The different labels (i.e. subgroups) that were entered in the Region.Label column of 

the data file. 

2. Area: maximum area in hectares covered for each combination of region and species. In the 

data file, there were only zeroes specified in the column Area because we do not wish to 

estimate the nest abundance in an area larger than the sampled area (CoveredArea). In our 

case, we don’t use this information. 

3. CoveredArea: Total area in hectares surveyed according to the Effort, as well as the 

maximum Distance range (in this case 19.7 m, see above) to which a nest was observed. 

In this case, we can obtain the CoveredArea of a subgroup by multiplying 19.7 by 2 (left and 

right of transect), multiplied by the Effort of the subgroup, and divided by 10,000 to 

transform units in hectares. 

4. Effort: Sum of transect lengths in meters specified in the column Effort of the data file. 

5. n: Number of nests found. 

6. k: Number of transects completed. 

7. ER: Encounter rate of nests, which is n divided by Effort. 

8. se.ER: Standard error for ER. This variability stems from the different number of nests found 

per transect. 

9. cv.ER: Coefficient of variation for ER, which is ER divided by se.ER. 
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The last section of the output, Density, gives, for each subgroup, the density estimates on the 

real scale (nests/ha; column Estimate) along with their standard error (se), coefficient of 

variation (cv), lower (lcl) and upper (ucl) limits of the 95% confidence interval, and the 

degrees of freedom (df). At this stage, winter nest densities obtained with the model using the 

hazard-rate detection function are considered final for the mesic tundra habitat. 

 In the wet tundra habitat, we only observed one winter nest of brown lemming on all 

transects surveyed in 2016, which is clearly not enough to estimate a detection probability. 

Thus, we should expect problems when trying to model it with our three candidate models: 

 

mod.2016.hn.wet <- ds(data=nids2016[nids2016

$habitat=="wetland",],convert.units=0.0001,adjustment = "cos", key="hn") 

mod.2016.hr.wet <- ds(data=nids2016[nids2016

$habitat=="wetland",],convert.units=0.0001,adjustment = "cos", key="hr") 

mod.2016.un.wet <- ds(data=nids2016[nids2016

$habitat=="wetland",],convert.units=0.0001,adjustment = "cos", key="un") 

 

Running the half-normal model, we obtain the error message "All models failed to fit!", 

which was expected. Idem for the model using the uniform detection function. In contrast, the 

algorithm of the model using the hazard-rate detection functions initially showed convergence 

but showed non-convergence when adding the cosine adjustment. Here is the output obtained 

for the hazard-rate model: 

Estimating winter nest densities - example 

 > Starting AIC adjustment term selection. 

 Fitting hazard-rate key function 

 Key only model: not constraining for monotonicity. 

 AIC= 3.997 

 Fitting hazard-rate key function with cosine(2) adjustments 

 Error :  

 gosolnp-->Could not find a feasible starting point...exiting 

   

 Error in model fitting, returning: hazard-rate key function 

   Error: Error in -lt$value : invalid argument to unary operator 

Looking at the fit of the model (command ds.gof) reveals that the chi-square fit test could not 

be performed due to the very small sample size. When a detection probability cannot be 

estimated, one can use the number of nests observed divided by the area surveyed as an estimate 

of the minimum number of nests present. Detection probabilities of nests are typically high 

within 5 m of the transects as it is usually ≥80% in years with sufficient sample size on Bylot 

Island. Even though this distance can be debated, what is important is to be consistent and use 

this distance every time the minimum number of nests observed has to be calculated due to low 
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sample size. Here, we assume that the total area surveyed with high confidence is 9.73 ha (5 m × 

2 × 9,730 m; the last number being the total length of transects surveyed). Thus, the minimum 

density of brown lemming winter nests in the wet tundra habitat was 0.1 nest/ha. 

 The stream gully habitat is generally where winter nests of lemmings are found in greater 

number on Bylot Island and 2016 was no exception to this trend. This allowed the algorithms of 

all three models with different detection functions to converge correctly. Moreover, all three 

models had a good fit to the data (chi-square p-values >0.05). In this case, we need to go 

through model selection using the AICc. The command AICc calls the AIC corrected for small 

sample sizes. Here are the commands followed by their respective outputs: 

 
AICc(mod.2016.hn.stream) 

 > 899.6271 

 

AICc(mod.2016.hr.stream) 

 > 900.5045 

 

AICc(mod.2016.un.stream) 

 > 900.6723 

 

The results indicate that the model using the half-normal detection function 

(mod.2016.hn.stream) has the highest statistical support but by a slight margin over other 

models. As discussed by Miller et al. (2016), density estimates of models with ΔAICc of <2 are 

generally very similar. We can confirm this by looking at the summary output of each model. In 

order to simplify the procedure and because model selection is not encouraged by the authors of 

the Distance package, model-averaging is not mandatory here. The summary output of the half-

normal model gives the following densities: 

Estimating winter nest densities - example 

 > Density: 

          Label  Estimate        se         cv       lcl       ucl        df 

 1     C1_brown 1.9095345 0.6314549 0.33068527 0.9680017  3.766855 17.093597 

 2  C1_collared 0.7638138 0.2785534 0.36468759 0.3622828  1.610376 16.891409 

 3     C2_brown 1.7611425 0.5102431 0.28972275 0.9340333  3.320677  9.814222 

 4  C2_collared 3.8745135 0.8098676 0.20902432 2.4534961  6.118557 10.663913 

 5     C3_brown 1.5368649 1.0155672 0.66080449 0.2920485  8.087541  4.066051 

 6  C3_collared 5.7083554 2.6987334 0.47276899 1.6658221 19.561106  4.130564 

 7     GP_brown 1.1554434 0.1927791 0.16684427 0.3412927  3.911743  1.314785 

 8  GP_collared 5.7772169 0.5300150 0.09174226 4.3160061  7.733130  2.995671 

 9     PD_brown 2.6220797 1.2261916 0.46764084 0.7747626  8.874076  4.133514 

 10 PD_collared 6.9127556 1.0847546 0.15692072 4.6760654 10.219316  5.463403 

 11       Total 3.2021720 0.3979328 0.12426965 2.4683873  4.154091 17.825047 

The densities obtained by the half-normal model are plausible and errors are a fraction of the 

density estimates. These results can thus be considered final. 
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