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Cyanobacterial mats are often a major biological component of extreme aquatic ecosys-
tems, and in polar lakes and streams they may account for the dominant fraction of total
ecosystem biomass and productivity. In this study we examined the vertical structure and
physiology of Arctic microbial mats relative to the question of how these communities
may respond to ongoing environmental change. The mats were sampled from Ward Hunt
Lake (83˚5.297′N, 74˚9.985′W) at the northern coast of Arctic Canada, and were composed
of three visibly distinct layers. Microsensor profiling showed that there were strong gra-
dients in oxygen within each layer, with an overall decrease from 100% saturation at the
mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the
profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences
throughout the mat, while Nostoc related species dominated the two upper layers, and
Nostocales and Synechococcales sequences were common in the bottom layer. High per-
formance liquid chromatography analyses showed a parallel gradient in pigments, from
high concentrations of UV-screening scytonemin in the upper layer to increasing zeax-
anthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to
photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by
lake level fluctuations and evaporative concentration of salts, and thus increased osmotic
stress of the littoral mat communities. To assess the cellular capacity to tolerate increas-
ing osmolarity on physiology and cell membrane integrity, mat sections were exposed to
a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluores-
cence were made to assess changes in maximum quantum yield.The results showed that
the mats were tolerant of up to a 46-fold increase in salinity. These features imply that
cyanobacterial mats are resilient to ongoing climate change, and that in the absence of
major biological perturbations, these vertically structured communities will continue to be
a prominent feature of polar aquatic ecosystems.
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INTRODUCTION
Cyanobacterial mats are well known for their ecological success
in extreme environments (Stal and Krumbein, 1985). Some of
the most striking examples occur in the polar regions where
cyanobacterial mats often dominate the biomass and produc-
tivity of freshwater ecosystems (Vincent, 2000). This ubiquitous
and abundant distribution has been attributed to the ability of
Arctic and Antarctic cyanobacterial communities to withstand
extreme conditions of the polar environment including contin-
uous solar radiation (UV and photosynthetically active radiation,
PAR) during summer, persistent cold temperatures, and freeze–
thaw cycles (Zakhia et al., 2008). These ambient conditions of
the Arctic are currently being modified by the impacts of global
climate change. Observations and models show faster climatic
changes in the Arctic than at other latitudes, with a rate of atmos-
pheric warming over the last four decades that has been up to

three times greater than the global average (Serreze and Francis,
2006), and this trend is likely to continue in the future (IPCC,
2007).

Two major impacts of warming on Arctic lakes are reduced
thickness and duration ice cover, and a shift toward an increas-
ingly negative precipitation minus evaporation balance. The latter
is favored by increased evaporation at warmer lake water tem-
peratures, as well as the increasing exposure of the lakes to the
atmosphere during a longer ice-free season. For some High Arctic
lakes this has led to increased salinities, and in some cases, complete
evaporation to dryness (Smol and Douglas, 2007). Cyanobacterial
mats living in these shallow water ecosystems will be increasingly
subject to the osmotic stresses of solute concentration and desicca-
tion. These effects may be further compounded by salt-exclusion
during freeze-up of shallow water lakes (Schmidt et al., 1991)
and the littoral zone of deeper lakes. Cyanobacteria have long
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been known to be tolerant of salinity fluctuations, but to a vari-
able extent among taxa (Mackay et al., 1984), and osmotic effects
have not been assessed in the Arctic where the physiological stress
may be exacerbated by cold ambient temperatures. Both evapo-
ration and salt-exclusion contribute to high salinity and the polar
microbial mats are exposed to higher salinities in liquid water
compared to microbial mats at lower latitudes. Reduced ice cover
(and its associated snow; Belzile et al., 2001) also results in greater
exposure to solar UV radiation, which is increasing over the Arc-
tic as a result of stratospheric ozone depletion (Manney et al.,
2011).

The phylogenetic composition of temperate latitude microbial
mats has been extensively studied (e.g., Balskus et al., 2011; Bolhuis
and Stal, 2011) and these communities contain diverse cyanobac-
teria, other Bacteria, and some eukaryotes. However, despite their
ubiquitous distribution throughout the Arctic, in lakes, ponds and
streams, the community composition, and structure of micro-
bial mats in northern Polar Regions is much less studied. Initial
surveys of bacteria (Bottos et al., 2008), cyanobacteria (Jungblut
et al., 2010), and one metagenomic study of mats on Arctic ice
shelves, has confirmed the diversity of cyanobacteria along with
other Bacteria, notably Proteobacteria, and Archaea (Varin et al.,
2010). The ice shelf mats also provide a protected habitat for
eukaryotes including diatoms, chlorophytes, flagellates, ciliates,
and microinvertebrates (Vincent, 2000).

Most studies to date on high latitude microbial mats have
focused on their bulk taxonomic, pigment, and physiological
characteristics; however there is also evidence of strong vertical
gradients in these properties within such communities (e.g., Que-
sada et al., 1999; Hawes and Schwarz, 2001). Such gradients are
also well known from temperate latitude mats. For example, a
study conducted on microbial mats of the intertidal zone showed
major vertical changes down the mat profile in coloration, pigment
content, and phylogenetic composition (Balskus et al., 2011).

Our aims in the present study were to characterize cyanobacter-
ial mats growing at the northern limit of the terrestrial High Arctic,
and to evaluate the hypothesis that these communities have a high
tolerance to the osmotic stresses that may be increasingly common
in the future. We determined the oxygen and pH gradients in mat
samples by way of microsensor profiling in two successive years
of sampling. We partitioned the mats into their component layers
distinguishable by color, and examined the molecular phylogeny
(by 16S rRNA gene analysis) and pigment composition (by high
performance liquid chromatography, HPLC) of each stratum to
evaluate the vertical structure of these communities that thrive in
the extreme High Arctic environment.

MATERIALS AND METHODS
STUDY SITE
Sampling took place in July 2010 and 2011 at Ward Hunt Lake
(WHL; 83˚05.297′N,74˚09.985′W),as part of the program“North-
ern Ellesmere Island in the Global Environment” (NEIGE). This
lake is on Ward Hunt Island off the northern coast of Ellesmere
Island in the Canadian High Arctic and within Quttinirpaaq
National Park. The total area is of the lake is 0.37 km2, with a max-
imum recorded depth of 7.5 m. At this extreme latitude, ice covers
the lake for at least 9 months of the year and there are 147 days

of continuous light during summer (Mueller et al., 2005). Micro-
bial mats occur in the seasonally ice-free littoral zone along the
northern and western sides of the lake. Although, phytoplankton
in this oligotrophic lake are strongly nutrient limited, high concen-
trations of nutrients have been recorded in the interstitial waters of
the mats (Villeneuve et al., 2001), and in 2-week bioassays the mat
phototrophs showed no response to nutrient enrichment (Bonilla
et al., 2005).

FIELD SAMPLING
Temperature, oxygen, and conductivity of lake water in the lit-
toral zone were measured on July 10, 2011 using a Hydrolab DS5X
profiler (Loveland, CO, USA).

The mats were sampled from 10 to 20 cm water depth in July
2010 and 2011. The samples were placed in a cooler with lake water
and taken directly to a field laboratory. Microenvironmental gradi-
ents within the mats were assessed within 20–40 min of collection
using micromanipulator-controlled, 10 μm diameter Unisense
microsensors for oxygen and pH (Unisense, Aarhus, Denmark),
with accurate positioning to within 10 μm. The microsensor mea-
surements were made at 100 μm intervals to obtain vertical profiles
through the mats.

The cyanobacterial mats samples were separated at the field
laboratory into three layers: surface black colonies, an upper pink
layer, and a lower green layer (Figure 1). Subsamples for HPLC
analysis of the three layers were placed into a dry-shipper (previ-
ously cooled with liquid nitrogen) in the field and transferred to
−80˚C storage until pigment analysis. Samples for DNA extrac-
tion were stored in 1.5 mL of buffer (1.8 mL of 40 mmol L−1 EDTA;
50 mmol L−1 Tris pH = 8.3; 0.75 mol L−1 sucrose) and kept frozen
in the dry-shipper in the field and transferred to −80˚C storage
until analysis.

FIGURE 1 | Photograph of theWard Hunt Lake microbial mats. The mats
were photographed 30 min after sampling, on July 7, 2010. The mat on the
left shows the view from the top, with black colonies distributed over the
pink surface. The mat on the right has been turned upside down to show
the green layer, which extended down into interstices of the underlying
rocky substrate. The black colonies were up to 5 mm in diameter.
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PIGMENT ANALYSIS
Within 1 month of collection, samples from the three layers of
the microbial mat destined for pigment analysis were freeze-dried
using a Labconco Freezone 12 (Labconco, Kansas City, USA). Mat
subsamples were then weighed and extracted in the dark by grind-
ing for 2 min followed by two sonication treatments for 30 s each
at 17 W in 4 mL 90% acetone:water (vol/vol). The samples were
then left overnight at −20˚C under an argon gas atmosphere,
and the supernatant recovered after vortexing and centrifugation
(4150 rpm for 15 min at 4˚C). This was filtered through a 0.2-μm
pore size PTFE Acrodisc filter (PALL Corporation, Ann Arbor, MI,
USA) and placed in a 2-mL amber vial with an argon gas atmos-
phere for immediate analysis by HPLC. Each layer of the mat was
extracted three more times to ensure the full recovery of all mate-
rial. Four vials were thus analyzed for each mat sample, and the
results summed.

High performance liquid chromatography analysis was per-
formed using a ProStar HPLC system (Varian, Palo Alto,
CA, USA) with a Symmetry C8 column (3.5 μm pore size,
4.6 mm × 150 mm; Waters Corporation, Milford, MA, USA) at
25˚C, with a C8 guard column (5 μm pore size, 3.9 mm × 20 mm;
Waters Corporation). Carotenoids were quantified by their
absorbance at 450 nm in a Diode Array Detector (350–750 nm)
and chlorophylls were detected by fluorescence (excitation at
400 nm and emission at 650 nm). The HPLC separation method
was as in Zapata et al. (2000). Pigments were identified based on
retention time and spectral comparisons with standards from DHI
(Water & Environments, Horsholm, Denmark).

MOLECULAR ANALYSIS
Mat samples for DNA analysis were extracted using a modified salt-
based protocol as in Harding et al. (2011). Cyanobacteria-specific
primers 27F1 and 809R (Jungblut et al., 2005, 2010) were used
to amplify 16S rRNA gene fragments using the polymerase chain
reactions (PCR) with Phusion® High-Fidelity Polymerase, buffer,
and dNTPs (New England BioLabs, Pickering, ON, Canada) on the
iCyclerTM Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules,
CA, USA). Denaturation was for 30 s at 98˚C, followed by 29 cycles
of 10 s at 98˚C, 30 s at 55˚C, 30 s at 72˚C, and a final extension time
of 5 min at 72˚C.

Amplified PCR products were verified by gel electrophore-
sis then purified with a QIAquick PCR Purification kit (Qiagen,
Mississauga, ON, Canada). Amplicons were cloned using a Strat-
aClone PCR Cloning Kit (Stratagene, Agilent Technologies, Santa
Clara, CA, USA). Positive clones were transferred to 96-well plates
containing Luria Bertani medium with 7% glycerol. The target
cloned fragments were amplified using the vector-specific primers
M13F and M13R. PCR products were verified by gel electrophore-
sis and the results visualized using the Bio-Rad Gel Doc imaging
system and Quantity One Software (Bio-Rad Laboratories, Her-
cules, CA, USA). For each library 30–50 clones were sequenced
using the vector-specific T7 universal primer (single read) at the
Centre Hospitalier de l’Université Laval (CHUL, QC, Canada)
using an ABI 3730xl system (Applied Biosystems, Foster City, CA,
USA), after purification.

A total of 108 high quality sequences were retained and man-
ually checked using the BioEdit program (Hall, 1999 – version

7.0.5.3). Suspect sequences were checked manually to detect
chimeras by separate nBLAST searches of short fragments. The
closest matches for each ribotype based on nBLAST searches
(Altschul et al., 1990) of the nr/nt GenBank database were selected
as reference sequences, additional sequences of cultured species
were also added in an attempt to increase the phylogenetic res-
olution. If the closest match was to an uncultured clone, the
closest isolated strain sequence was retrieved and included in
our phylogenetic analysis. Following our microscopy identifi-
cation (see below) of the morphological genus Dichothrix we
directly sequenced several filaments from one colony, which were
picked under a stereo microscope. Four samples were ampli-
fied directly using cyanobacterial specific primers 27F1 and 809R
and sequenced in both directions using the same primers. The
eight separate sequencing reactions yielded the same sequence
(CBS4-C1). The phylogenetic tree was constructed following, ini-
tial alignment with multiple alignment using fast Fourier trans-
form (MAFFT, Katoh and Toh, 2008) on the EMBL-EBI portal
(http://www.ebi.ac.uk/Tools/msa/mafft/), all sequences were then
trimmed to 754 nt and realigned using first MAFFT and then
ClustalW2, both provided similar arrangements and Nexus guide
trees with the 16S rRNA gene sequence of E. coli DP170 as the
outgroup. The final tree was constructed and bootstrapped (1000
replicates) using the Maximum Likelihood in RAxML program
(Version 7.3.0; Stamatakis, 2006; Stamatakis et al., 2008). The
evolutionary model used was GTR +i+ gamma (Tavaré, 1986).
The sequences are deposited in GenBank (accession numbers
JQ249752–JQ249830).

MICROSCOPY ANALYSIS
The microbial mat samples were preserved with a 10% (final con-
centration) glutaraldehyde–paraformaldehyde solution (Lovejoy
et al., 1993) and maintained in the dark at 4˚C until analy-
sis. Samples were dispersed prior to enumeration and diluted in
purified water (milliQ water, Millipore, Billerica, USA) to be sedi-
mented in 15 mL cylindrical counting chambers (Villeneuve et al.,
2001); and observed by Fluorescence, Nomarski, Utermöhl (FNU)
microscopy (Lovejoy et al., 1993). Samples were examined using
an Olympus IX71 inverted microscope (Olympus Canada, Rich-
mond Hill, ON, Canada) at 200× and 400× magnification under
UV, green, or blue excitation as well as under bright field (Köhler)
illumination.

Another microbial mat sample for taxonomic analysis was kept
frozen at −20˚C without fixatives. This sample was thawed and
dispersed in water prior to examination with an Olympus IX71
inverted microscope at 200× magnification under visible light.

SALINITY TOLERANCE EXPERIMENT
Twelve 150 mL beakers were filled with 100 mL of water sampled
from WHL on July 7, 2010, and these lake water samples were then
adjusted to the following conductivities with a NaCl solution: 0.25
(original lake water, no salt addition) 0.5, 1, 2.5, 5, 10, 30, 100, 150,
200, 250, and 300 mS cm−1. NaCl solution was used as sodium
and chloride are the most abundant dissolved ions in seawater, and
the marine aerosols that reach this coastal lake. The experiment
was repeated the next year (July 7, 2011) with the same range of
salinities, plus an additional treatment of 50 mS cm−1. A 1.3-cm2
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sample of freshly collected microbial mat was placed in each
beaker, and the active fluorescence parameters F 0 (minimum flu-
orescence) and F m (maximum fluorescence) were then measured
over the subsequent 24 h using a PAM 2000 (Walz, Germany).
Photochemical quantum yield [F v/F m = (F m − F 0)/F m] was cal-
culated according to Butler (1978) to assess the physiological state
of the photosynthetic communities within the microbial mats.
The measurements were made placing the fluorescence detector
at a distance of 6 mm from black communities of the surface. In
the 2010 experiment, the mats were also inverted to measure the
response of the bottom community.

RESULTS
MICROSENSOR PROFILES
On July 10, 2010, the lake water at the mat sampling site had
a measured conductivity of 250 μS cm−1, the pH was 7.45, the
water temperature was 5.2˚C, and the oxygen concentration was
at 107% of saturation. The microbial mat was composed of three
distinct layers: the black layer from the surface to 2.2 mm depth
in 2010 and to 1.5 mm in 2011; the pink layer to 4 mm depth;
and the green layer to the bottom at 5.5 mm in 2010 and 4.8 mm
depth in 2011 (Figure 2). Within the mat, the in situ percentage
of oxygen saturation decreased from 100% at the surface to 56%
within the upper black layer, further decreasing to 19% through
the middle pink layer and to 0% at the bottom of the green layer.
There was a steep gradient within each layer, as indicated by the
high coefficients of variation (Table 1). The pH slightly increased
down the mat profile from 7.45 to 7.52 in the upper black layer,
to 7.80 through the pink layer, and to 7.93 in the bottom green
layer, with peaks in pH at the midpoint of each layer (Figure 2A;
Table 1). The oxygen and pH profiles were similar in 2011, but
oxygen did not fall completely to zero at the bottom of the profile
(Figure 2B).

PIGMENT ANALYSES
The major pigments as shown by HPLC analysis were scy-
tonemin and its decomposition product reduced-scytonemin,
4-ketomyxol-2′-methylpentoside (keto-mmp), fucoxanthin, myx-
oxanthin, alloxanthin, zeaxanthin, lutein, canthaxanthin, echi-
nenone, Chlorophyll a (Chl a), and β-carotene (Table 2). Chl
a concentrations were similar in the pink and black layers, and
increased eightfold in the lower layer, from 55 (pink) to 430 μg Chl
a g−1 dry weight (green). The black and pink layers had similar
ratios of pigments per unit Chl a, with high ratios of scytonemin,
red-scytonemin, keto-mmp, canthaxanthin, echinenone, and β-
carotene. Canthaxanthin, echinenone, and β-carotene were still
present in the green layer, along with myxoxanthin and zeax-
anthin and trace amounts of reduced-scytonemin, scytonemin,
and keto-mmp. The eukaryotic pigments fucoxanthin, alloxan-
thin, and lutein were also recovered from this bottom layer. The
concentrations of photoprotective carotenoids (echinenone, zeax-
anthin, lutein,and canthaxanthin) and photosynthetic carotenoids
(fucoxanthin and alloxanthin) varied among layers. Myxoxanthin
and β-carotene have more than one role in the cell and were
therefore excluded from this analysis. Photoprotective carotenoids
per unit Chl a were twofold higher in the black and pink layers
relative to the bottom green layer, while the two photosynthetic
carotenoids were only detected in the green layer (Table 2).

MOLECULAR ANALYSIS
A clone library was generated for each layer. We obtained 26, 41,
and 41 high quality sequences for the black, pink, and green layer
respectively for a final number of 108 sequences The cyanobacteria
sequences from the three layers were diverse and while several of
the sequences had good matches to cultured species for exam-
ple Snowella spp. and Synechococcus sp. PC7502, the majority
had best matches to other environmental clones, notably those

FIGURE 2 | Unisense microsensor oxygen (white circles) and pH (black diamonds) profiles down through the microbial mat in 2010 (A) and 2011 (B).
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Table 1 | pH and oxygen, SD; coefficient of variation (CV) within the

three layers of cyanobacterial mats from Ward Hunt Lake, July 7, 2010.

Layer pH Oxygen (% saturation)

Mean ± SD CV (%) Mean ± SD CV (%)

Black 7.7 ± 0.1 1.7 66.2 ± 14.9 22.5

Pink 7.8 ± 0.1 0.7 47.4 ± 8.2 17.2

Green 7.9 ± 0.0 0.6 14.1 ± 7.6 53.7

Black, Pink, and Green designate the upper, middle, and bottom layers of the mat.

Table 2 | Pigment characteristics of the microbial mat layers as

defined inTable 1.

Black layer Pink layer Green layer

CONCENTRATION (μg g−1 DRY WEIGHT)

Chlorophyll a 62.5 54.7 429.8

PIGMENT RATIOS

Red-scytonemin 0.14 0.06 <0.01

Scytonemin 0.17 0.06 <0.01

Keto-mmp 0.28 0.41 <0.01

Fucoxanthin n.d. n.d. 0.06

Myxoxanthin n.d. n.d. 0.03

Alloxanthin n.d. n.d. 0.01

Zeaxanthin n.d. n.d. 0.06

Lutein n.d. n.d. 0.01

Canthaxanthin 0.13 0.17 0.02

Echinenone 0.14 0.12 0.04

β-carotene 0.16 0.14 0.18

Photoprotective carotenoids 0.27 0.29 0.14

Photosynthetic carotenoids n.d. n.d. 0.39

Total carotenoids 0.72 0.84 0.42

The pigment ratios are per unit by weight. The photoprotective carotenoids val-

ues are for summation of echinenone, zeaxanthin, lutein, and canthaxanthin.The

photosynthetic carotenoids are for fucoxanthin and alloxanthin.The abbreviations

used are: keto-mmp, 4-ketomyxol-2′-methylpentoside; n.d., not detectable.

recovered previously form WHL sequences (Figure 3) reported in
Jungblut et al. (2010). Three environmental clusters accounted for
the majority of the clones and these were named after the origi-
nal WHL sequences (WHL-82, WHL-87, and WHL-69). Nearest
cultured matches to other sequences included Nostoc, Leptolyn-
gbya, Phormidium, Oscillatoria, Chamaesiphon, and Gloeobacter
(Figure 3). Oscillatorian sequences were found in all three layers,
but in different proportions. The black layer sequences were mostly
Nostoc, which accounted for 65% of the sequences. Synechococ-
cus and Leptolyngbya were the second and third most frequent
followed by Pseudanabaena and Gloeobacter. The pink layer was
similar to the black layer with Nostoc accounting for 50% of
sequences, but the second most common sequences were clos-
est to Pseudanabaena with 22%, followed by Gloeobacter, Syne-
chococcus, Phormidium, and Leptolyngbya and Chamaesiphon. The
green layer was quite different with lower representation by Nostoc
(29% of sequences). Snowella sequences accounted for 22% and

Synechococcus for 27% of the sequences, and taxa with sequences
closest to Pseudanabaena, Leptolyngbya, Phormidium, Oscillatoria,
and Gloeobacter were also present in this layer (Figure 4). The
sequence of Dichothrix morphospecies aligned most closely to
Leptolyngbya in the Oscillatoriales.

MICROSCOPIC ANALYSIS
Diverse morphospecies were observed within the microbial mat.
In the black and pink layers, heterocystous Dichothrix sp. was
well represented, with its usual associated fine filaments. Nostoc
sp., mostly in small colonies, were also noted. The pink layer con-
tained various Oscillatoriales of diverse filament diameters, within
the morpho-genera Lyngbya, Oscillatoria, Phormidium, Pseudan-
abaena, and Leptolyngbya. In the lower green layer, the order
Synechococcales was represented, specifically, the colonial gen-
era Snowella and Aphanocapsa. Other than cyanobacteria, pennate
diatoms occurred throughout the microbial mat and included the
genera Achnanthes, Caloneis, Cymbella, Denticula, Eunotia, Navic-
ula, and Nitzschia. Nematodes were observed in the green layer.

SALINITY RESPONSES
The initial F v/F m of the microbial mat in 2010 ranged from 0.35
to 0.39. For the upper black layer, the F v/F m values immedi-
ately after the salt amendments defined as T 0 remained above
0.25 up to 150 mS cm−1, and fell to less than 0.1 at conductivi-
ties of 200 mS cm−1 and above. After 8 and 24 h of incubation,
high F v/F m values (>0.2) were maintained up to 30 mS cm−1

(Figure 5A). A similar set of responses was recorded for the green
layer, with high F v/F m values (>0.2) up to 100 mS cm−1 at T 0

and to 30 mS cm−1 at 8 and 24 h (Figure 5B). This experiment
was repeated in 2011 for the upper black layer, and the results were
similar to those in 2010. F v/F m values above 0.2 were recorded at
conductivities up to 50 mS cm−1 over 4 h. After 2 days of incuba-
tion, F v/F m values >0.29 were maintained up to 30 mS cm−1 and
there was a decline to <0.1 at 50 mS cm−1 (Figure 5C).

To test the capacity of the photosynthetic communities to
recover from the salinity increase, all mat sections at the end of the
first experiment were placed back into lake water with its natural
conductivity of 0.25 mS cm−1. The mats that had been previously
exposed to conductivities of less than 50 mS cm−1 showed ongo-
ing F v/F m ratios above 0.2 and values above 0.3 were recorded for
prior exposures of up to 10 mS cm−1. There was some evidence
of partial recovery in the two most extreme salinities (150 and
200 mS cm−1), where F v/F m values rose from zero to around 0.2
after 4 h (Figure 6).

DISCUSSION
COMMUNITY COMPOSITION
Cyanobacteria dominated the microbial mats from WHL, as in
many lakes of the polar regions (e.g., Vincent, 2000; Zakhia et al.,
2008). Previous studies on this lake have reported taxa from the
Nostocales, Oscillatoriales, and Synechococcales (Villeneuve et al.,
2001; Bonilla et al., 2005; Jungblut et al., 2010), consistent with our
analyses. Nostoc was found throughout the mat, producing black
globular colonies at the surface. The sequence from filaments of
the “Dichothrix” sample was found to be within the Oscillato-
riales, rather than the Nostocales as expected. Reliably classified
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FIGURE 3 | Phylogenetic tree from clone library and reference

sequences. Sequences from the black (CBS1), pink (CBS2), and green
(CBS31 and CBS32) layers are in black, pink, and green respectively. The
different sequence designations from the libraries follow the dash, and the
numbers of identical sequences are given in parenthesis. The Dichothrix
filaments CBS4-C1 direct PCR sequence is light blue. Reference sequences
are dark blue. WHL sequences are from Jungblut et al. (2010) and cCLA
sequences from Harding et al. (2011). Bootstraps values ≥60% based on
maximum likelihood are indicated at the nodes.

Dichothrix species are not as yet represented in GenBank and
further investigation is required to determine if this Dichothrix,
which had heterocysts and therefore is morphologically a hetero-
cystous Nostocales, has affinities to the non-heterocystis Oscilla-
toriales. Alternatively, the thin trichomes that appear on the tips of
Dichothrix colonies may be a separate oscillatorian taxon, which
we amplified from our single trichome. Deeper within the mat
matrix there were no macroscopic colonies, suggesting a shift
toward the uniseriate, filamentous form of Nostoc that is often
found in association with Oscillatoria (Potts, 2000). The ability of
Nostoc to fix nitrogen, resist desiccation (Mataloni et al., 2000),
and form UV-screening pigments (see below) would make it well
suited to life at the mat surface in the shallow littoral waters of the
lake. While not observed in the present study, Nostoc also produces
motile hormogones (Broady, 1979), enabling vertical migration to
optimize UV-protection deeper within the mat, light-harvesting
toward the mat surface, and access to nutrient resources in the
mat interior.

In the green layer of the mat, there was an increased pres-
ence of taxa that had their closest 16S rRNA gene sequence
matches to Snowella and Synechococcus. These mostly planktonic
taxa have previously been reported as metaphyton (Komárek
and Komárková-Legnerova, 1992). Synechococcus mats are known
from hot spring environments (Stal, 2000), but have been less
reported from the polar regions.

Gloeobacter-like sequences (WHL-69 cluster, Figure 3) were
found throughout the mat, and have been reported previously
from WHL and a pond mat from Ellesmere Island (Jungblut et al.,
2010). The sequences in the present study also closely match a set
of Gloeobacterales sequences from an epilithic biofilm of a Spanish
high mountain lake (GenBank accession number FR667281 and
associated sequences). The Gloeobacterales lineage is divergent
from other cyanobacteria in a variety of striking ways, including
the absence of thylakoids and unique genes for carotenoid biosyn-
thesis (Tsuchiya et al., 2005). However the GenBank reference
Gloeobacter in culture (strain PCC 7421) is only 93% similar to our
sequences, the Jungblut et al. (2010) sequences, and those from the
Spanish alpine lakes, implying that this phylogenetically unusual
component of the cold biosphere may prove to be a new genus.

Oscillatorian cyanobacteria were found through the mat pro-
file and are well known from Arctic and Antarctic mats. These
organisms in culture have an ability to acclimate via pigment shifts
to large variations in ambient irradiance including UV radiation
(Quesada and Vincent, 1997). Most are cold-tolerant rather than
psychrophiles (Tang et al., 1997). The oscillatorians recorded here
had close matches to those previously reported in this region of
the High Arctic (Jungblut et al., 2010; Harding et al., 2011) and
included those that remain distance from cultured groups (WHL-
82 clade and WHL-87 clade). Overall our phylogenies highlighted
the poor concordance between morphospecies and 16S rRNA gene
sequences as previously noted by Jungblut et al. (2010) and oth-
ers. The limited morphological repertoire of cyanobacteria likely
contributes to this poor phylogeny and suggests that this group
requires major careful taxonomic revision. The 16S rRNA gene
may also lack resolution at higher taxonomic ranks and additional
genes need to be included in such revisions. However, despite these
shortcomings, at the level of 99–100% similarity many of the
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FIGURE 4 |The percentage of each taxonomic group in the black, pink,

and green layers of the Ward Hunt Lake microbial mat. The nearest
matches are given to the following reference taxa: Gloeobacter, accession

number FR798924.1, 93% similarity; Leptolyngbya, AY493607.1, 88–99%;
Synechococcus, AF448080.1, 95–99%; Pseudanabaena, AB039019.1,
86–94%; Snowella, AJ781041.1, 97%; Nostoc, EU178143.1, 90–95%.

sequences were previously recovered from the same lake and all
of their nearest environmental matches were to other cold regions
as earlier reported by Jungblut et al. (2010).

PIGMENT COMPOSITION
The HPLC analyses showed clear differences in pigment con-
centration and composition through the mat profile, and this
vertical structure may reflect both species differences as well as
physiological differences among the layers (Quesada et al., 1999).
Reduced-scytonemin and scytonemin were major pigments of
the black layer of the microbial mat, and are well known in the
Nostocales. The decrease in scytonemin and reduced-scytonemin
with an increase in keto-mmp was consistent with Pseudanabaena
and other oscillatorians in the pink layer. The photoprotective
carotenoids were in highest concentration, both in absolute terms
and per unit Chl a in the upper two layers where irradiance and
oxygen levels were highest, consistent with their role as quenching
agents of reactive oxygen species.

The pigment signature of the green layer was in accordance with
the appearance of myxoxanthin and zeaxanthin, which are typical
for Synechococcales, and the presence of three pigments that are
characteristic of eukaryotic taxa: fucoxanthin (found in diatoms
and other chrysophytes), alloxanthin (found in cryptophytes), and
lutein (characteristic of green algae). Our observations as well as
previous taxonomic analyses of these mats have observed pen-
nate diatoms, notably Cymbella spp. and Achnanthes spp., as well
as chlorophytes, notably Mougeotia sp. and Zygnema sp. (Vil-
leneuve et al., 2001). Canthaxanthin, echinenone, and β-carotene
are found in all cyanobacteria, and were detected in all three layers,
as expected.

Scytonemin and its reduced derivative (Garcia-Pichel and Cas-
tenholz, 1991) contributed the dominant fraction of the total
pigment content of the mat, collectively accounting for 2% of
the dry weight of the surface community, 0.6% of the pink layer,

and 0.2% of the bottom layer. In cultured organisms, scytone-
min has been recorded up to 5% of dry weight, and can similarly
accumulate to high levels in natural assemblages (Karsten et al.,
1998). This pigment has a broad absorbance maximum that peaks
in the UV-A waveband but that also extends into the UV-B and
PAR wavebands (Proteau et al., 1993). It can absorb up to 90%
of incident radiation (Castenholz and Garcia-Pichel, 2000), and
thereby acts as an effective sunscreen for the entire community.
The Ward Hunt communities therefore seem well protected from
any future increases in UV exposure as a result of stratospheric
ozone depletion or increased duration of ice-free conditions.

OXYGEN AND pH PROFILES
The oxygen content of the mats dropped from 100% saturation,
to 0% at the bottom of the green layer in 2010, and to below
40% in 2011. This implies that the mat consortia have a strong
respiratory demand for oxygen as a result of the bottom layer
phototrophs growing under shaded conditions, as well as the
high concentration of bacterial heterotrophs typically found in
polar microbial mats (e.g., Varin et al., 2010). It may also reflect
the strong oxygen sink conditions immediately beneath the mats,
where heterotrophic bacteria would dominate. The low photosyn-
thesis/respiration (P/R) balance is likely to extend upward through
the mat later in the season when the lake becomes covered by
ice and snow and the day length shortens, eventually to contin-
uous winter darkness. In shallow Antarctic ponds, the bottom
waters become anoxic during winter-freeze-up, and the mats expe-
rience continuous reducing conditions through much of the year
(Schmidt et al., 1991). Similar conditions are likely to prevail in
WHL during late Arctic autumn and winter.

The pH profiles of the Ward Hunt mats showed an increase
with depth, contrary to the decreasing P/R ratios down the pro-
file as inferred from the oxygen data. However the shifts were
relatively small, in accordance with the high dissolved inorganic
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FIGURE 5 | Photophysiological responses by Ward Hunt Lake mats to

osmotic stress. The mats were incubated at a range of increasing
salinities, and the quantum yield ratio (F v/F m) was measured immediately
(T 0), and after 8 and 24 h in 2010 and immediately (T 0) and after 4, 6, 24, and
48 h in 2011. The 2010 data are for the surface black layer (A) and the bottom
green layer (B), and the 2011 data are for the surface black layer only (C).
The horizontal dashed lines are for the mean F v/F m values calculated for all
time intervals at salinity up to 10 mS cm−1 (vertical dashed lines).

carbon concentrations, and thus buffering capacity, that have
been observed in the interstitial waters of these mats. Up to
141 mg C L−1 were measured in the mats, while the concentra-
tions in the overlying water were around 16 mg C L−1 (Villeneuve

et al., 2001). The pH peaks in each layer might reflect a depth opti-
mum for oxygenic photosynthesis in each community, with the
equivalent peak in oxygen obliterated by its rapid diffusive flux
downward as a result of the strong vertical gradient in concentra-
tion. Although rare, 16S rRNA gene sequences of green sulfur bac-
teria have been recorded from these microbial mats (Lionard and
Lovejoy, unpublished data). However, no marker pigments (bacte-
riochlorophylls) for photosynthetic sulfur bacteria were detected
in the HPLC analyses, implying that any anoxygenic photosynthe-
sis was likely minimal. The pH values throughout the mat were
within the neutral to alkaline range in which cyanobacteria are
commonly found (Castenholz, 2009).

SALINITY TOLERANCE
The Ward Hunt mats tolerated increased salinity up to a con-
ductivity of 10 mS cm−1, 46 times ambient salinities of the lake
water, with little change in photophysiological state as measured
by the active fluorescence parameter F v/F m. For the mats previ-
ously exposed to high salinities and then placed in freshwater, this
quantum yield ratio returned within hours to the range 0.35–0.39,
indicative of excellent physiological conditions for Nostoc (Bowker
et al., 2002). The mucilaginous, exopolysaccharide sheath envelop-
ing Nostoc colonies, is known to provide a buffer from external
variations in salinity (Webb et al., 2003; Hall-Stoodley et al., 2004).
However, salinity tolerance varies widely among cyanobacteria,
which range from species of relatively narrow tolerance (Stal and
Krumbein, 1985) to euryhaline species (Nübel et al., 1999). The
broad tolerances measured here for both the surface and bottom
communities imply that cyanobacteria species in the mats con-
tinue to be metabolically active despite large and rapid fluctuations
in salinity, effectively increasing the range of environmental con-
ditions where active photosynthesis can occur, with implications
for the energy budget within the microbial mats. These results
are consistent with measurements of photosynthesis by microbial
mats from Arctic (Mueller et al., 2005) and Antarctic ice shelves
(Hawes et al., 1992); and Antarctic lakes (Sabbe et al., 2004), which
have shown acclimation to greatly increased salinities.

CONCLUSION
The cyanobacterial mats of WHL were suited to resist the major
fluctuations in environmental conditions that occur at present
in the High Arctic. The layered community structure, with UV-
screening pigments and photoprotective carotenoids at the surface,
allows a more diverse community including eukaryotes to grow
in the bottom green communities of the mats. These bottom
communities must contend with low oxygen tensions in sum-
mer, and the entire mat community is likely to experience anoxia
during winter-freeze-up. The salinity responses measured here
indicate broad tolerances and no loss of photosynthetic func-
tion under high and fluctuating osmolarities. Previous work on
polar microbial mats has shown their tolerance of desiccation
(Hawes et al., 1992), and that cyanobacterial isolates from Arc-
tic and Antarctic mats grow faster at temperatures that are well
above the present day ambient conditions (Tang et al., 1997). In
combination, these results imply that cyanobacterial communi-
ties will continue to dominate polar aquatic ecosystems despite
ongoing variations in water balance, increased UV radiation, and
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FIGURE 6 | Photophysiological activity of Ward Hunt Lake mats

during their recovery from osmotic stress. The mats that were
incubated under increased salinities for 48 h (as in Figure 5) were
transferred back to the original Ward Hunt Lake water (conductivity of
0.25 mS cm−1), and their photosynthetic quantum yields (F v/F m) were

then monitored during the subsequent 16 h. (A) Pre-incubation
conditions of 0.25 (control; solid circles), 5 (open circles), 30 (closed
squares), and 100 mS cm−1 (open squares). (B) Pre-incubation conditions
of 2.5 (control; solid circles), 10 (open circles), 150 (closed squares), and
200 mS cm−1 (open squares).

prolongation of ice-free conditions. However, these slow-growing
mat communities currently experience little grazing pressure, and
their persistence may be less assured if the northward expansion
of invasive species accompanying climate change (Vincent et al.,
2011 and references therein) includes arthropod grazers that feed
on these large stocks of benthic microbial biomass.
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