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Review
The Antarctic continent is frequently cited as the last
pristine continent on Earth. However, this view is mis-
leading for several reasons. First, there has been a rapid
increase in visitors to Antarctica, with large increases at
research bases and their environs and to sites of major
tourist interest (e.g. historical sites and concentrations
of megafauna). Second, although substantial efforts
are made to avoid physical disturbance and contami-
nation by chemical, human and other wastes at these
sites, little has been done to prevent the introduction of
non-indigenous microorganisms. Here, we analyse the
extent and significance of anthropogenic introduction
of microbial ‘contaminants’ to the Antarctic continent.
We conclude that such processes are unlikely to have
any immediate gross impact on microbiological com-
munity structure or function, but that increased efforts
are required to protect the unique ecosystems of
Antarctica from microbial and genetic contamination
and homogenisation.

Human impacts on Antarctica
The Antarctic Continent is often described as the last
pristine continent on Earth, where the combination of
geographic isolation, environmental extremes and limited
accessibility have restricted both the direct impact of
human activities (in terms of the numbers and duration
of human presence on the continent) and the consequences
of these impacts. Human presence on the continent spans a
mere 190 years, following the first documented landing in
1820. Since that time, human colonisation has followed a
pseudo-exponential increase, with a transition from eco-
nomic exploitation (sealing, whaling and fishing) and he-
roic exploration to modern scientific investigation and
tourism [1–4]. The dramatic rise in the numbers of visitors
to the continent over the past three decades corresponds in
part with a growing international interest in Antarctica as
a laboratory for multidisciplinary research. Although visi-
tor numbers have been dominated numerically by Antarc-
tic ecotourists [1,2,4], in reality staff working with national
research programme operators spend ca. 20 times more
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time, cumulatively, on the Antarctic continent than those
associated with the tourist industry [5].

The impacts of scientific and tourist activities take
many forms [2], but are generally similar to those occur-
ring elsewhere on the globe [6], although to a lesser
extent. Impacts can include physical damage, chemical
and biological contamination, biological invasions and
resource overexploitation. Although the specific nature
and extent of these impacts have been comprehensively
reviewed [1,3,7–10], most attention, in the case of bio-
logical invasions, has focussed on processes involving
higher organisms (such as plants vertebrates and macro-
invertebrates) [1,11,12], with less consideration of the
significance of microbial contamination. Where microbial
introductions have been addressed, the focus has been
largely restricted to the impacts of human and animal
pathogens (including viruses) [7,8,13] and organisms
with deleterious implications (such as the non-indige-
nous fungal deterioration of timbers in historic huts
[14]). Much less attention has been given to other forms
of microbial contamination (but see [15,16]). In this
review, we focus specifically on the processes and con-
sequences of microbial contamination and invasions on
Antarctic microbiota, particularly those mediated by
human activities on the continent.

The concept of impact
For larger organisms, such as plants, impact of a given
alien species can be defined as the product of its range
size, abundance per unit area and effect per individual or
unit biomass [17]. To assess overall impacts of alien
species in an area, the ‘per species’ level impact can be
multiplied by the number of such species [18,19]. Making
such assessments for microbes is clearly difficult [20].
Therefore, another measure of impact is required. Prop-
agule pressure, or the number or frequency of individuals
introduced to an area, and colonisation pressure, or the
numbers of taxa introduced to an area per unit time,
have proven effective predictors of the numbers and status
of alien organisms in higher taxa [21]. For microbes these
variables might also be difficult to quantify [21]. However,
in many other taxa, strong relationships exist between
human activity and both propagule and colonisation
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Table 1. Specific annual impact values for Antarctica and other regions

Location/date Land area (km2) Annual impacta Specific annual impactb Relative specific impact

Antarctica (total), 1880 1.4 � 107 0 0 0

Antarctica (total), 1903 1.4 � 107 35 � 1 5 � 10�6 0.0001

Antarctica (total), 2009 1.4 � 107 34 000 � 0.1 1 � 10�4 0.02

Antarctica (ice-freec), 2009 4.5 � 104 34 000 � 0.1 5 � 10�3 1

Marion Island, 2009d 290 80 � 0.08 + 16 � 1 7.7 � 10�2 15

New Zealand, 2010e 2.7 � 105 4.4 � 106 � 0.9 14.7 2930

Deception Island, 2006/2007f 0.5 16 800 � 4.6 � 10�4 15.5 3090

China, 2000g 9.6 � 106 1.24 � 109 � 0.9 115.8 23 150

McMurdo Station, 1997h 0.5 1258 � 0.2 + 100 � 1 703 140 640

Greater London, UK, 2009i 1572 7.75 � 106 � 0.9 4437 887 404

aAnnual impact is defined as the total number of personnel multiplied by the fractional occupancy (the estimated proportion of the year spent occupying the specified

region). For national or urban sites, this value is arbitrarily set at 0.9 (i.e. on average members of the population occupy the region for 90% of each year). For Antarctic visitors,

fractional occupancy is set at 0.1 [averaging short occupancy (tourists) and long occupancy (scientists and support staff)].

bSpecific annual impact is calculated as the annual impact divided by the terrestrial land area (km2). Relative specific impact is relative to Antarctica (2009), defined as 1.

cIce-free land area of the Antarctic continent: 0.32% of total.

dMarion Island is one of the sub-Antarctic islands that form associated and dependent ecosystems of Antarctica [11].

eData from www.stats.gov.nz.

fSub-Antarctic Deception Island is one of the top ‘Antarctic’ ecotourism sites.

gData from www.cia.gov.

hData from www.nsf.gov.

iData from www.statistics.gov.uk/.
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pressure, both in the Antarctic region and elsewhere
[22,23]. Therefore, as some measure of the probable impact
of microbial organisms, the extent of human activity can
be used. This measure is relatively simplistic; one obvious
caveat being that all activities are not equal. For instance,
although ca. 16 000 tourists visit Whalers Bay (Deception
Island, one of the most popular tourist sites in Antarctica)
in a season, their microbial input is probably less than that
of a small research station which can receive considerable
amounts of cargo, fresh foods, building supplies and other
materials in a season.

Here, we refer to such human activity as ‘anthropogenic
impact’ (in terms of disseminating non-indigenous micro-
organisms into the immediate environment) and define it
as the integrated value of all individuals’ presence at a
location (which might be a single place or an entire conti-
nent) in any specific year (a single individual present at a
site for an entire year would yield a value of 1, and one
present for three months 0.25). We also define ‘specific
impact’ by dividing this value by the total land area
available, as an approximate measure of the degree of
anthropogenic impact on a defined region as a whole.
Although an estimation of the cumulative duration of
human presence at any site is actually a measure of
‘introduction potential’, we argue that the anthropogenic
transport and dissemination of microorganisms is an in-
evitable consequence of human presence.

This approach can be refined by identifying specific
environmental domains at incremental spatial scales.
We acknowledge that this calculation will tend to general-
ise the impact across the defined area, and we readily
acknowledge that microbial dispersal, whether in cities
or ice-free valleys of Antarctica, is by no means homoge-
neous. Nevertheless, we argue that this approximation
provides a useful comparative determinant for visualising
the likelihood of human impacts in regions where the
consequences of such impact may be of ecological concern.
An initial comparison of the calculated specific impact
values (Table 1) suggests that, although the value for the
entire Antarctic continent is extremely low, values rise by
factors of 50 and 2 million when calculated for the ice-free
areas of the continent or for the US McMurdo Station on
Ross Island, respectively. This is particularly important
because human occupancy of the Antarctic continent is
largely concentrated in ice-free areas, on which most of the
government-operated scientific research stations are sited
and where the terrestrial tourist landings (at historic sites
and concentrations of the ‘charismatic megafauna’) are
found [2].

Some of the consequences of human impact are readily
quantifiable and well documented. For example, all sites of
habitation (principally scientific stations, but also field
camps and even historic exploration relics) have measur-
able waste outputs. A proportion of these outputs, typically
the aqueous fractions, are released to the local marine
environment via submarine outflow pipes [24,25]. Other
human impact effects, such as disturbance of animal and
bird populations, are well documented (see reviews [1,2]).

Inputs of non-indigenous microorganisms
Despite its geographical isolation, the Antarctic continent
is not and has never been microbiologically isolated, but is
constantly seeded by populations of non-indigenous micro-
organisms transported from the southern hemisphere con-
tinents by high altitude aeolian processes [26,27]. No
quantitative estimates of the total inorganic (or organic)
inputs to the Antarctic continent are available, but the
annual volume is expected to be very large. Whatever the
scale, the numerical values for input of non-indigenous
microorganisms should be considered in the context of the
extant microbial cell occupancy, estimated for Antarctic
Dry Valley soils as 106–108 g [28], or equivalent to
1010–1012 cells for a 1-m2 � 1-cm deep soil profile. Our
hypothesis, although as yet untested, is that the extent
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Box 1. The Lake Vostok issue: endemism and contamination

The invasion of non-indigenous microbes into Antarctica is an especially

important issue for the exploration and stewardship of Antarctic

Subglacial Aquatic Environments (SAEs). The largest of these liquid

water environments, Lake Vostok, lies 4 km beneath the surface of the

ice and was detected by airborne ice-penetrating radar surveys in the

1970s. Later observations showed that it has a maximum water depth of

ca. 1000 m, and area of 15 690 km2, making it one of the world’s great

lakes. Lake Vostok occupies a rift valley, and is likely to have formed 15–

25 million years ago, with replacement of its water at a timescale of

thousands of years by melting and refreezing of the overlying ice. More

recent surveys have shown that the subglacial Antarctic environment is

composed of vast watersheds of many interconnected lakes, thin films

of liquid water and flowing rivers and streams [78].

There is intense interest in Lake Vostok and other SAEs as potential

habitats for microbial communities, particularly given their long

history of isolation under extreme pressures and other unusual

environmental conditions. There is also much concern about

potential contamination of these unique environments, perhaps the

last pristine waters on Earth, by non-indigenous microbes during any

attempts to explore them [79]. In 1998, a Russian ice-drilling project at

Vostok Station penetrated to 3623 m depth, some 120 m short of

breaking through into the liquid fresh water of subglacial Lake Vostok.

The drill penetrated into accretion ice (ice that has thawed and

refrozen) but drilling was terminated to avoid contamination of the

‘pristine’ Lake Vostok water (Figure I).

Concerns have been heightened by analyses of the drilling fluids

used to fill the borehole, which showed a large number of

contaminant microbial taxa [80]. The potential introduction of

microbial and other contaminants has generated controversy over

the origin of microbes detected in Lake Vostok lake ice, and has

underscored the need to minimise or eliminate such contamination to

reliably assess the native microflora (if present) of the lake, as well as

to prevent the introduction of taxa that could survive or grow under

these extreme conditions. An initial set of guidelines for the long-term

stewardship of these waters [81] recognised that the interconnectivity

of the SAEs increased the risk of spreading any such microbial cell

and nucleic acid contamination. These guidelines were subsequently

refined by the Scientific Committee for Antarctic Research, culminat-

ing in an international code of conduct for SAE exploration and

research. This code includes principles and guidelines that explicitly

address the risk of introduction of non-indigenous microorganisms

into Antarctic subglacial waters [82].
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Figure I. Subglacial lakes and rivers on the Antarctic continent.
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of the physiological, genetic and ecological impacts of
introduced microorganisms on extant microbial communi-
ties is to some extent a function of the numerical ratio
between introduced organisms and extant organisms.

Aeolian particle capture experiments have demonstrat-
ed that the majority of transported microorganisms are of
regional origin [26], but the fact that some species show a
clear bipolar distribution (e.g. [29]) suggests that both
aeolian capture and transport processes could also operate
globally. The efficacy of the aeolian transport route for
microscopic propagules is also illustrated by the exception-
al bryophyte communities found around widely separated
areas of geothermally active ground in Victoria Land, the
South Shetland Islands and South Orkney Islands [30],
which also illustrate the requirement for suitable habitat
for colonisation as well as the ability to disperse per se.
Somewhat surprisingly, some airborne particle traps have
shown little evidence of marine microbial phylotypes in
542
terrestrial ice-free areas [31]. Given the propensity of the
southern oceans to generate aerosols, which would be
obvious vehicles for transport of marine microorganisms,
and clear evidence of marine aerosol nutrient input to
near-coastal terrestrial ecosystems in the maritime Ant-
arctic [32], this remains something of an anomaly.

The continental surface is continuously exposed to nat-
ural seeding by inorganic and organic particles. However,
the discovery of subglacial lakes that may have been
physically and genetically isolated for millions of years
(Box 1) has raised the possibility that unusual microbiota
may have evolved in these waters and are sequestered
beneath the ice sheet. This discovery has also raised con-
cerns about the vulnerability of such lakes to microbial
contamination.

The concept of anthropogenic microbial contamination
of the Antarctic environment has been considered for
some time (reviewed in [33]), but has largely focussed on



Box 2. Anthropic microbial contamination of field camps sites

As a measure of potential impact, and based on the values

calculated here of daily microbial dissemination, it is possible to

roughly estimate the local microbial contamination impact for a

field party working in a controlled and localised camp for a given

period. For a typical example, where six individuals occupy a field

camp location of 50 m2 (Figure I) for a period of 10 days, the

cumulative microbial impact is ca. 6 � 1010 cells. Assuming that

these cells were evenly distributed into the top 1 cm of the mineral

soil of the camp site (which constitutes a ca. 5 � 105 cm3 volume),

each 1 cm3 volume would receive around 105 cells, equivalent

to between 0.1% and 10% of the natural microbial load in such

soils [34].

TRENDS in Microbiology 

Figure I. A typical Antarctic Dry Valley field camp. A ‘corral’ system is used to ensure that physical (and biological) impact is limited to the interior of the site.
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contamination of soil and water by the effluent streams of
scientific stations. Numerous studies have demonstrated
the presence of both culturable coliforms and other human
faecal bacteria [24] and Escherichia coli phylotypic signals
[34] in the vicinity of research stations and their effluent
outfalls. These sources of contamination are highly local-
ised and might be of more significance to inshore marine
habitats than terrestrial environments because many re-
search stations are positioned on the coast and discharge
human waste directly into the sea.

More recently, and in line with a dramatic increase in
tourist access to the Antarctic continent, awareness of
anthropic dissemination of microorganisms into Antarctic
terrestrial ecosystems has been growing [27]. The surface
of the human body typically supports a population of over
1012microorganisms [35]. These organisms are continually
released through the direct and unavoidable processes of
hair loss, skin cell sloughing, sneezing, coughing, etc. If we
conservatively assume that the daily body surface turnover
is 0.1% (human epidermal cell turnover is estimated at
around 28 days [36]), this is equivalent to a daily personal
dissemination to the immediate environment of the order
of 109 microbial cells. This value does not represent a
particularly large carbon contribution to the environment,
but it potentially represents a significant input of novel
genetic elements (Box 2).

Contamination by non-indigenous microorganisms
might also be an indirect consequence of human activities;
that is, derived from the many elements of the physical
infrastructure which support activities in the Antarctic,
such as clothing, equipment and foodstuffs. Although there
might be considerable overlap in microbial populations
disseminated by these direct and indirect mechanisms,
the technical issues of decontamination are clearly very
different. An example of an indirect mechanism of contam-
ination is the 132 kg of soil containing viable fungi and
bacteria from the Falkland Islands and South Georgia that
was transported into the Rothera Research Station (UK)
on uncleaned vehicles [10]. Self-regulated ‘codes of con-
duct’, which guide the behaviour of both the Antarctic tour
operators and Antarctic national research activities, are
designed to prevent gross contamination (through cleaning
of footwear, clothing, packs and other equipment). Howev-
er, the efficacy of these codes of conduct varies widely
amongst nations and categories of visitors to the continent
[27], as evidenced by ongoing calls for more uniform im-
plementation of the formal requirements of the Environ-
mental Protocol to the Antarctic Treaty [37], and
substantial differences in seed propagule load amongst
visitor categories [38].

Distribution and dissemination
The majority of human activities on the Antarctic conti-
nent are focussed in highly localised areas, typically in and
around scientific stations, field camps and historic and
biologically important sites. It is therefore reasonable to
assume that a large proportion of anthropogenic input
contamination is localised to these sites. This is broadly
supported by local contamination studies [39], although no
extensive regional contamination studies have been
543
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Figure 1. Fourteen day windflow backtrack patterns. (a) September to October 2004 and (b) January to February 2005. The patterns show extensive and highly variable air

movements over west Antarctica (reproduced, with permission, from [31]).

Review Trends in Microbiology November 2011, Vol. 19, No. 11
reported. The impact of such localised contamination on
the non-impacted (pristine) regions of the Antarctic conti-
nent is therefore dependent on ‘natural’ physical processes,
most notably aeolian transport. The difficulty in determin-
ing whether a fungal species has been introduced is illus-
trated by Aspergillus fumigatus, which can cause
aspergillosis in bird populations. This species was isolated
from soil near Adélie penguin colonies at Cape Hallet,
Victoria Land [40], but has also been detected in soil in
a remote dry valley [41].

Although few studies have reported aeolian transport of
non-indigenous microorganisms (but see [30]), the coastal
regions of the continent are subject intermittently to very
high velocity katabatic winds which transport, at least
locally and periodically, high volumes of mineral fines
and biological propagules [42]. Conversely, Antarctic air
typically has only low levels of airborne particles [26]. It is
therefore uncertain to what extent microbial contaminants
resulting from human activities are disseminated, and
whether these dissemination patterns occur on scales of
metres or (many) kilometres. Studies have shown non-
indigenous microbial signals in impacted sites but not from
‘reasonably close pristine’ sites [43], suggesting that trans-
port might be local. Clearly, if wind-borne dissemination
processes are significant, they would inevitably result in
enormous ‘dilution’ of the contaminant signal, and dissem-
ination processes which are dependent on prevailing wind
flows will certainly not result in a homogeneous distribu-
tion. Backtrack trajectory analyses (see, e.g. [30]) might be
relevant, as they demonstrate the extremely wide origins
from which air masses affecting parts of Antarctica origi-
nate (Figure 1). Clearly, there is some conflict in the
conclusions of these studies, suggesting that studies focus-
sing on the dissemination of identifiable marker organisms
would be highly informative.
544
Survival and function of non-indigenous microbial cells
It is a reasonable assumption that most incident organ-
isms, whether of aeolian or anthropogenic origin, will be
mesophiles with cardinal growth temperatures of ca. 0 8C
(Tmin) to 40 8C (Tmax). Nevertheless, for mesophilic organ-
isms, metabolic activity would be limited in soil habitats
where mean summer surface temperatures are less that
10 8C and mean annual temperatures can be as low as ca.
�20 8C [44]. At least in the short term, non-indigenous
organisms are unlikely to significantly contribute to any
aspect of nutrient cycling, owing to their very low density
and very low metabolic activities.

This argument notwithstanding, the temperatures of
different microenvironments in terrestrial ice-free
Antarctica are not homogeneous. During the austral sum-
mer period, microniches (soil surface, lithic, etc.) experi-
ence temperatures substantially above the local mean (e.g.
[45]). In protected habitats, outgrowth by invasive macro-
organisms has been noted: for example, the growth of non-
indigenous grass species in sheltered microhabitats offered
by buildings [1], and non-indigenous species are increas-
ingly evident in more pristine sites [46]. When species
become established (such as temperate grass species on
the sub-Antarctic islands [1]), they can dominate both
environments and biogeochemical processes (e.g. [47]).
We argue that given appropriate environmental condi-
tions, similar processes will occur with microbial popula-
tions. This has already been demonstrated, with the
discovery of established populations of temperate fungi
in the Ross Island historic huts [14].

Generally, the survival of non-indigenous microorgan-
isms, however disseminated, is expected to be low. The
lifestyle of most incident microorganisms is unlikely to be
well suited to the more ‘extreme’ elements of the Antarctic
terrestrial environment, but it should be noted that the



Box 3. Growth ranges of extremophiles

Cold-loving microorganisms were originally classified into different

physiological classes based on their cardinal growth temperatures

[83]:

Psychrophile: Tmin < 0 -C, Topt �15 -C, Tmax <20 -C.

Psychrotroph: Tmin > 0 -C, Topt < 25 -C, Tmax <35 -C. This term is

generally out of favour, and preferred generic term for organisms

derived from low temperature environments is ‘psychrophile’ [84].

The term ‘trophic’ pertains to a nutritional state and is not useful for

stipulating the temperature an organism can tolerate.

Psychrotolerant: Tmin < 0 -C, Topt �15 -C, Tmax <25 -C.

Mesophile: Tmin < 0 -C, Topt �30 -C–35 -C, Tmax <45 -C.

To circumvent the inadequacies of this terminology, the terms

‘eurypsychrophile’ and ‘stenopsychrophile’ have been proposed

[85]. The term stenopsychrophile (formerly ‘true psychrophile’)

describes a microorganism with a restricted growth temperature

range that cannot tolerate higher temperatures for growth. Eur-

ypsychrophiles (formerly ‘psychrotolerants’ or ‘psychrotrophs’) are

microorganisms that ‘like’ permanently cold environments but can

tolerate a wide range of temperatures extending into the mesophilic

range (i.e. ‘mesotolerant’ not ‘psychrotolerant’).
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climates of the Antarctic Peninsula and even some of the
coastal continental oases are relatively benign (as com-
pared to the Dry Valleys, for example). However, extensive
culture-dependent studies have shown that the most com-
mon soil microbial isolates are either psychrotrophs or
psychrotolerant strains of mesophilic species (Box 3). True
psychrophiles are relatively uncommon [48].

Although it is not clear which of the ‘extreme’ elements
would have the greatest impact on cell survival, it is
probable that the low temperatures, rapid freeze–thaw
cycling, desiccation and oligotrophy typical of Antarctic
terrestrial soil habitats [49] would be detrimental to micro-
organisms not adapted to such microenvironmental con-
ditions. A limited number of studies of cell survival in
Antarctic soils [43] suggest that the retention of viability
(measured as culturability) from the time of dissemination
is measured in days rather than weeks or months. It was
noted [50] that faecal coliforms lost viability rapidly, but
that sporulating Clostridium sp. and Bacillus sp. were
viable after >30 years of freeze–thaw cycles on the Fossil
Bluff dump site on Alexander Island (Antarctic Peninsula).
We therefore believe that it is unlikely that microorgan-
isms of anthropogenic origin will establish viable popula-
tions in Antarctic habitats.

Residual biological signals and opportunities for lateral
gene transfer
Even if the survival of viable microbial cells is relatively
short, a general perception exists that nucleic acids (and
therefore phylogenetic signals) will have a much longer
half-life. This perception is largely based on the macro-
scopic conditions typical of the more extreme portions of
the Antarctic terrestrial environment which are not dis-
similar to those used in the laboratory for long-term stor-
age of biological materials (i.e. desiccation and freezing, as
elements of freeze-frying). The few studies that have
addressed the matter suggest that naked double-stranded
DNA is stable for long periods in cold desert soils (e.g. [39]).

The potential of prokaryotes to exchange genetic infor-
mation through lateral gene transfer (LGT) is recognised as
a major factor in their evolution. In bacteria, LGT occurs
through transformation (uptake and incorporation of naked
DNA), conjugation (cell contact-dependant DNA transfer)
and transduction (transfer of bacterial host DNA to a recipi-
ent cell via a bacteriophage). Advances in high-throughput
sequencing technologies have clearly shown that LGT is a
common and widespread process, and that all prokaryote
genomes contain major regions of genes acquired from other
domains during their evolutionary history [51].

Temperate soil environments have been shown to be
conducive to LGT [52,53], but the susceptibility of cells to
LGT is determined by the physiological and biological
features of the community, occurring at a frequency of
10–1 to 10–8 per prokaryotic cell [51].

In the complex non-aqueous communities which consti-
tute Antarctic desert soils, LGT may be limited due to
physical separation of adsorbed cells. However, aqueous
microlayers on mineral surfaces could provide a mechanism
for microbial mobility, uptake of released nucleic acids and
cell–cell contact, resulting in LGT. Naked DNA concentra-
tions can exceed 1 mg/g in soils [54] and might persist for
prolonged periods, particularly under Antarctic conditions
[39]. Considering that non-indigenous microorganisms are
not likely to be metabolically active, natural transformation
might be the predominant form of LGT in Antarctic soils.
However, the specialised microniche communities (e.g.
chasmolithic, endolithic and hypolithic [55]) might be con-
sidered hotspots for LGT, in that they provide microenvi-
ronmental conditions which favour microbial community
survival and growth (e.g. increased water bioavailability;
temperature and desiccation buffering [55]) which might
also increase the frequency and efficiency of LGT.

To date, little evidence exists for LGT in Antarctic soil
environments [56,57] and much remains to be understood
about the impact that LGT from non-indigenous microor-
ganisms would have on Antarctic microbial communities.
Given the potential for gene exchange to occur across wide
phylogenetic distances, LGT potentially has the capacity to
profoundly affect the evolution of these communities
through altering their structure, diversity, function and
robustness [58]. However, even if LGT events were to occur
in this environment, LTG is often deleterious to the cell
[51,59], not all genes are transferred equally [60] and traits
are only maintained under appropriate selection pressures.
Genetic modules which are frequently transferred in terres-
trial environments via LGT are those allowing adaptation to
rapidly evolving biotic interactions. These include antibiotic
resistance genes [61] and degradative genes and pathways
in response to the release of xenobiotics or new secondary
metabolites [62,63]. Certainly, there is evidence that intro-
duced microorganisms have the capacity to accelerate the
degradation of contaminating hydrocarbons in Antarctic
soils [64]. Therefore the acquisition of new genetic capacities
(e.g. by LGT) could have unexpected benefits to the Antarctic
terrestrial environments. The extent to which these would
be maintained, however, would be dependent on continued
selective pressure.

Impacts of microbial introductions
Microbial pathogens

Pathogens, particularly viruses, represent a potential
threat to indigenous species, irrespective of domain. The
545
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occurrence and distribution of phages in terrestrial Ant-
arctic microbial communities, although very poorly under-
stood, might be important as a regulator of microbial
biomass, in a manner similar to that proposed for other
microbially dominated habitats such as hot springs [65]. A
recent study identified that an Antarctic lake supported a
relatively diverse virome [66]. The extent to which invasive
species could introduce phages with host specificities broad
enough to infect indigenous microbial hosts is a concern
and this might conceivably impact biomass and energy flow
in these systems.

The growing global disquiet surrounding emerging in-
fectious diseases also extends to Antarctica, in particular
due to the rapid spread of pandemic influenza viruses in
recent years. The threat to indigenous bird life (e.g. pen-
guins, petrels and skuas) from infectious diseases is far
from negligible and has long been a subject of concern (see
[8]). The potential for impacts via direct introduction from
anthropic sources is clearly worrying given the uniqueness
of Antarctic bird life, but is also complicated by the ten-
dency of many species to forage in southern continental
areas (such as Patagonia) where they might be exposed to
pathogens from human waste streams and thus introduce
pathogens indirectly [8].

For plants (including lower plants such as mosses,
which are widespread on the Antarctic continent) the
situation has been much less carefully assessed, although
the threat posed by potentially invasive fungal diseases is
highly pertinent. As an example, Fusarium graminearum
and Muscicillium theobromae, which can cause vascular
wilts in many different plants worldwide, were recently
introduced onto the Antarctic continent as contaminants of
fresh foods [67]. The same study demonstrated that Botryo-
tinia fuckeliana and a range of other microbial taxa, as well
as potential arthropod vectors of plant diseases, are rou-
tinely introduced to the region with fresh produce for
human consumption. We conclude that the risks of intro-
ducing pathogenic organisms through human activities are
real and significant.

Impacts on microbial community structure and function

Antarctic terrestrial habitats support endemic microbial
taxa that have been evolutionarily isolated for extended
periods [68]. In addition to endemism on a continental
scale, terrestrial microbial niches in ice-free regions such
as the McMurdo Dry Valleys display distinct microbial
communities [69]. Clear patterns of biogeographic regio-
nalisation are now recognised across the majority of
macroscopic organism groups typical of terrestrial envir-
onments in Antarctica [70,71]. Such regional heterogeneity
is interpreted as a strong signal of long-term (at least
multimillion) year presence, isolation and local evolution-
ary radiation. Such patterns are also starting to be recog-
nised in studies of elements of the microbial flora [72]. As a
result, there is now recognition of the risks associated with
anthropogenic assistance with intracontinental movement
of animal and plant species indigenous to one part of the
continent, as well as the genetic homogenisation that this
will lead to [73]. Such risks are plainly equally pertinent
to Antarctic microbial diversity, but studies are yet to
specifically address this subject.
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Climate change

It is widely accepted that long-term climate change, par-
ticularly an upward temperature trend in several areas of
the region [44], is likely to have a dramatic impact on
Antarctic terrestrial biology [74]. It is obvious that higher
mean temperatures will favour the growth of more tem-
perate species (including invasive aliens) over those that
are either slow growing or thermally sensitive. Within
microbial communities, which are known to be dominated
by psychrotolerant rather than obligate psychrophilic
organisms, such climate changes might have a limited
impact of community composition, but might be expected
to increase biomass loads (e.g. by outgrowth of cryptic
communities and expansion of soil crusts).

It is reasonable to assume that biological ‘invasions’ due
to warming-induced niche modification will lead to in-
creased biogeochemical cycling and energy flow, and in-
creased species richness [75]. The invasion of glacier
forelands by invasive plants shows that for some organ-
isms this is already happening [46]. Such invasions may
have wide ranging effects including soil stabilization, no-
tably by cyanobacteria and mosses [76] and lower plants,
and increased trophic complexity leading to higher produc-
tivity.

It is even more difficult to assess whether microbial
contamination and climate change will show positive or
negative synergy. With a sufficiently dramatic tempera-
ture rise, temperate (mesophilic) microbial ‘aliens’ might
eventually outcompete indigenous microorganisms, an ef-
fect which could well be partly countered by the broadening
of physiological capacity acquired by these organisms as a
result of LGT.

Concluding remarks
The anthropogenic contamination of so-called ‘pristine’
Antarctic environments is an extant process and can rea-
sonably be assumed to increase with increasing human
occupation of the continent. On the basis of our current
knowledge of molecular, physiological and system process-
es, we might predict that this process will have little overt
impact on extant microbial communities (unlike, e.g. the
establishment of non-indigenous plant and invertebrate
species on the sub-Antarctic islands). We suggest that the
climatic extremes of the Antarctic continent, even in
light of global warming trends, will prevent gross
microbiological colonisation events (such as the invasion
of New Zealand rivers by the non-indigenous diatom
Didymosphenia geminata [77]). However, a word of warn-
ing is appropriate. The past decade has seen dramatic
increases in the sensitivity and resolution of methods for
studying microbial ecology. Molecular phylogenetics,
whole-genome amplification and ultra-deep high-through-
put sequencing (to give only three examples) have dramat-
ically changed microbial ecology. If we assume at least a
linear future trend in technological development, we must
consider some future point when the microbial contamina-
tion derived from past, current and future activities could
pose a serious threat to the validity of molecular ecological
studies, and to the genetic integrity of Antarctic microbial
ecosystems. Indeed, concerns have been growing, based on
recent identifications of greater biogeographic structuring
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across the continent than previously appreciated, that
intraregional transfers of organisms as a consequence of
human activities may pose a significant conservation prob-
lem [27]. Not only would regionalism of the continent be
reduced through biological homogenisation, but the ability
of research to uncover historical and current patterns of
endemicity might be compromised. To counter such threats
might require a new tier of Antarctic Specially Protected
Areas, essentially ‘no-go, no-fly zones’ where access would
be permitted only under the strictest of conditions of
biological protection, designed to provide rigorous protec-
tion of the environment from human dissemination of non-
indigenous organisms. Such zones would, at the very least,
provide control sites for future comparative analyses of the
impacts and consequences of the anthropogenic introduc-
tion of microorganisms. They might also provide an indi-
cation of the extent to which the approaches required to
understand regionalisation of the continent might, by their
very nature, influence that understanding.
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